
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 22: The finite quantum de Finetti theorem

The main goal of this lecture is to prove a theorem known as the quantum de Finetti theorem. There
are, in fact, multiple variants of this theorem, so to be more precise it may be said that we will
prove a theorem of the quantum de Finetti type. This type of theorem states, in effect, that if a
collection of identical quantum registers have a state that is invariant under permutations, then
the reduced state of a comparatively small number of these registers must be close to a convex
combination of identical product states.

There will be three main parts of this lecture. First, we will introduce various concepts
concerning quantum states of multiple register systems that are invariant under permutations of
these registers. We will then very briefly discuss integrals defined with respect to the unitarily
invariant measure on the unit sphere of a given complex Euclidean space, which will supply
us with a useful tool we need for the last part of the lecture. The last part of the lecture is the
statement and proof of the quantum de Finetti theorem.

It is inevitable that some details regarding integrals over unitarily invariant measure will be
absent from the lecture (and from these notes). The main reason for this is that we have very
limited time remaining in the course, and certainly not enough time for a proper discussion of
the details. Also, the background knowledge needed to formalize the details is rather different
from what was required for other lectures. Nevertheless, I hope there will be enough information
for you to follow up on this lecture on your own, in case you choose to do this.

22.1 Symmetric subspaces and exchangeable operators

Let us fix a finite, nonempty set Σ, and let d = |Σ| for the remainder of this lecture. Also let n
be a positive integer, and let X1, . . . ,Xn be identical quantum registers, with associated complex
Euclidean spaces X1, . . . ,Xn taking the form Xk = CΣ for 1 ≤ k ≤ n.

22.1.1 Permutation operators

For each permutation π ∈ Sn, we define a unitary operator

Wπ ∈ U (X1 ⊗ · · · ⊗ Xn)

by the action
Wπ(u1 ⊗ · · · ⊗ un) = uπ−1(1) ⊗ · · · ⊗ uπ−1(n)

for every choice of vectors u1, . . . , un ∈ CΣ. In other words, Wπ permutes the contents of the
registers X1, . . . ,Xn according to π. It holds that

WπWσ = Wπσ and W−1
π = W∗π = Wπ−1 (22.1)

for all π, σ ∈ Sn.



22.1.2 The symmetric subspace

Some vectors in X1 ⊗ · · · ⊗ Xn are invariant under the action of Wπ for every choice of π ∈ Sn,
and it holds that the set of all such vectors forms a subspace. This subspace is called the symmetric
subspace, and will be denoted in these notes as X1 6 · · ·6Xn. In more precise terms, this subspace
is defined as

X1 6 · · ·6Xn = {u ∈ X1 ⊗ · · · ⊗ Xn : u = Wπu for every π ∈ Sn} .

One may verify that the orthogonal projection operator that projects onto this subspace is given
by

ΠX16···6Xn =
1
n! ∑

π∈Sn

Wπ.

Let us now construct an orthonormal basis for the symmetric subspace. First, consider the
set Urn(n, Σ) of functions of the form φ : Σ→N (where N = {0, 1, 2, . . .}) that satisfy

∑
a∈Σ

φ(a) = n.

The elements of this set describe urns containing n marbles, where each marble is labelled by
an element of Σ. (There is no order associated with the marbles—all that matters is how many
marbles with each possible label are contained in the urn. Urns are also sometimes called bags,
and may alternately be described as multisets of elements of Σ having n items in total.)

Now, to say that a string a1 · · · an ∈ Σ is consistent with a particular function φ ∈ Urn(n, Σ)
means simply that a1 · · · an is one possible ordering of the marbles in the urn described by φ.
One can express this formally by defining a function

fa1···an(b) =
∣∣{j ∈ {1, . . . , n} : b = aj}

∣∣ ,

and by defining that a1 · · · an is consistent with φ if and only if fa1···an = φ. The number of
distinct strings a1 · · · an ∈ Σn that are consistent with a given function φ ∈ Urn(n, Σ) is given by
the multinomial coefficient (

n
φ

)
,

n!
∏a∈Σ (φ(a)!)

.

Finally, we define an orthonormal basis of X1 6 · · ·6Xn as
{

uφ : φ ∈ Urn(n, Σ)
}

, where

uφ =

(
n
φ

)−1/2

∑
a1···an∈Σn

fa1 ···an=φ

ea1 ⊗ · · · ⊗ ean .

In other words, uφ is the uniform pure state over all of the strings that are consistent with the
function φ.

For example, taking n = 3 and Σ = {0, 1}, we obtain the following four vectors:

u0 = e0 ⊗ e0 ⊗ e0

u1 =
1√
3
(e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0)

u2 =
1√
3
(e0 ⊗ e1 ⊗ e1 + e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0)

u3 = e1 ⊗ e1 ⊗ e1,



where the vectors are indexed by integers rather than functions φ ∈ Urn(3, {0, 1}) in a straight-
forward way.

Using simple combinatorics, it can be shown that |Urn(n, Σ)| = (n+d−1
d−1 ), and therefore

dim(X1 6 · · ·6Xn) =

(
n + d− 1

d− 1

)
.

Notice that for small d and large n, the dimension of the symmetric subspace is therefore very
small compared with the entire space X1 ⊗ · · · ⊗ Xn.

It is also the case that

X1 6 · · ·6Xn = span
{

u⊗n : u ∈ CΣ
}

.

This follows from an elementary fact concerning the theory of symmetric functions, but I will
not prove it here.

22.1.3 Exchangeable operators and their relation to the symmetric subspace

Along similar lines to vectors in the symmetric subspace, we say that a positive semidefinite
operator P ∈ Pos (X1 ⊗ · · · ⊗ Xn) is exchangeable if it is the case that

P = WπPW∗π

for every π ∈ Sn.
It is the case that every positive semidefinite operator whose image is contained in the sym-

metric subspace is exchangeable, but this is not a necessary condition. For instance, the identity
operator 1X1⊗···⊗Xn is exchangeable and its image is all of X1⊗ · · · ⊗ Xn. We may, however, relate
exchangeable operators and the symmetric subspace by means of the following lemma.

Lemma 22.1. Let X1, . . . ,Xn and Y1, . . . ,Yn be copies of the complex Euclidean space CΣ, and suppose
that

P ∈ Pos (X1 ⊗ · · · ⊗ Xn)

is an exchangeable operator. There exists a symmetric vector

u ∈ (X1 ⊗Y1)6 · · ·6 (Xn ⊗Yn)

that purifies P, i.e., TrY1⊗···⊗Yn(uu∗) = P.

Proof. Consider a spectral decomposition

P =
k

∑
j=1

λjQj, (22.2)

where λ1, . . . , λk are the distinct eigenvalues of P and Q1, . . . , Qk are orthogonal projection oper-
ators onto the associated eigenspaces. As WπPW∗π = P for each permutation π ∈ Sn, it follows
that WπQjW∗π = Qj for each j = 1, . . . , k, owing to the fact that the decomposition (22.2) is unique.
The operator

√
P is therefore also exchangeable, so that

(Wπ ⊗Wπ) vec
(√

P
)
= vec

(
Wπ

√
PWT

π

)
= vec

(
Wπ

√
PW∗π

)
= vec

(√
P
)

.



Now let us view the operator
√

P as taking the form
√

P ∈ L (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn)

by identifying Yj with Xj for j = 1, . . . , n. We therefore have

vec
(√

P
)
∈ Y1 ⊗ · · · ⊗ Yn ⊗X1 ⊗ · · · ⊗ Xn.

Let us take u ∈ (X1⊗Y1)⊗ · · · ⊗ (Xn ⊗Yn) to be equal to this vector, but with the tensor factors
re-ordered in a way that is consistent with the names of the associated spaces. It holds that
TrY1⊗···⊗Yn(uu∗) = P, and given that

(Wπ ⊗Wπ) vec
(√

P
)
= vec

(√
P
)

for all π ∈ Sn it follows that u ∈ (X1 ⊗Y1)6 · · ·6 (Xn ⊗Yn) as required.

22.2 Integrals and unitarily invariant measure

For the proof of the main result in the next section, we will need to be able to express certain
linear operators as integrals. Here is a very simple expression that will serve as an example for
the sake of this discussion: ∫

uu∗ dµ(u).

Now, there are two very different questions one may have about such an operator:

1. What does it mean in formal terms?

2. How is it calculated?

The answer to the first question is a bit complicated—and although we will not have time to
discuss it in detail, I would like to say enough to at least give you some clues and key-words in
case you wish to learn more on your own.

In the above expression, µ refers to the normalized unitarily invariant measure defined on the
Borel sets of the unit sphere S = S (X ) in some chosen complex Euclidean space X . (The space
X is implicit in the above expression, and generally would be determined by the context of the
expression.) To say that µ is normalized means that µ(S) = 1, and to say that µ is unitarily invariant
means that µ(A) = µ(U(A)) for every Borel set A ⊆ S and every unitary operator U ∈ U (X ).
It turns out that there is only one measure with the properties that have just been described.
Sometimes this measure is called Haar measure, although this term is considerably more general
than what we have just described. (There is a uniquely defined Haar measure on many different
sorts of measure spaces with groups acting on them in a particular way.)

Informally speaking, you may think of the measure described above as a way of assigning an
infinitesimally small probability to each point on the unit sphere in such a way that no one vector
is weighted more or less than any other. So, in an integral like the one above, we may view that it
is an average of operators uu∗ over the entire unit sphere, with each u being given equal weight.
Of course it does not really work this way, which is why we must speak of Borel sets rather than
arbitrary sets—but it is a reasonable guide for the simple uses of it in this lecture.

In formal terms, there is a process involving several steps for building up the meaning of an
integral like the one above starting from the measure µ. It starts with characteristic functions for



Borel sets (where the value of the integral is simply the set’s measure), then it defines integrals
for positive linear combinations of characteristic functions in the obvious way, then it introduces
limits to define integrals of more functions, and continues for a few more steps until we finally
have integrals of operators. Needless to say, this process does not provide an efficient means to
calculate a given integral.

This leads us to the second question, which is how to calculate such integrals. There is
certainly no general method: just like ordinary integrals you are lucky when there is a closed
form. For some, however, the fact that the measure is unitarily invariant leads to a simple answer.
For instance, the integral above must satisfy∫

uu∗ dµ(u) = U
(∫

uu∗ dµ(u)
)

U∗

for every unitary operator U ∈ U (X ), and must also satisfy

Tr
(∫

uu∗ dµ(u)
)
=
∫

dµ(u) = µ(S) = 1.

There is only one possibility: ∫
uu∗ dµ(u) =

1
dim(X )

1X .

Now, what we need for the next part of the lecture is a generalization of this fact—which is
that for every n ≥ 1 we have(

n + d− 1
d− 1

) ∫
(uu∗)⊗n dµ(u) = ΠX16···6Xn ,

the projection onto the symmetric subspace. This is yet another fact for which a complete proof
would be too much of a diversion at this point in the course. The main result we need is a
fact from algebra that states that every operator in the space L (X1 ⊗ · · · ⊗ Xn) that commutes
with U⊗n for every unitary operator U ∈ U

(
CΣ) must be a linear combination of the operators

{Wπ : π ∈ Sn}. Given this fact, along with the fact that the operator expressed by the integral
has the correct trace and is invariant under multiplication by every Wπ, the proof follows easily.

22.3 The quantum de Finetti theorem

Now we are ready to state and prove (one variant of) the quantum de Finetti theorem, which is
the main goal of this lecture. The statement and proof follow.

Theorem 22.2. Let X1, . . . ,Xn be identical quantum registers, each having associated space CΣ for |Σ| =
d, and let ρ ∈ D (X1 ⊗ · · · ⊗ Xn) be an exchangeable density operator representing the state of these
registers. For any choice of k ∈ {1, . . . , n}, there exists a finite set Γ, a probability vector p ∈ RΓ, and a
collection of density operators {ξa : a ∈ Γ} ⊂ D

(
CΣ) such that∥∥∥∥∥ρX1···Xk −∑

a∈Γ
p(a)ξ⊗k

a

∥∥∥∥∥
1

<
4d2k

n
.



Proof. First we will prove a stronger bound for the case where ρ = vv∗ is pure (which requires
v ∈ X1 6 · · ·6Xn). This will then be combined with Lemma 22.1 to complete the proof.

For the sake of clarity, let us write Y = X1 ⊗ · · · ⊗ Xk and Z = Xk+1 ⊗ · · · ⊗ Xn. Let us also
write

S(m) =

(
m + d− 1

d− 1

) ∫
(uu∗)⊗m dµ(u),

which is the projection onto the symmetric subspace of m copies of CΣ for any choice of m ≥ 1.
Now consider a unit vector v ∈ X1 6 · · ·6Xn. As v is invariant under every permutation of

its tensor factors, it holds that
v =

(
1Y ⊗ S(n−k)

)
v.

Therefore, for σ ∈ D (Y) defined as σ = TrZ (vv∗) we must have

σ = TrZ
((

1Y ⊗ S(n−k)
)

vv∗
)

.

Defining a mapping Φu ∈ T (Y ⊗Z ,Y) for each vector u ∈ CΣ as

Φu(X) =
(

1Y ⊗ u⊗(n−k)
)∗

X
(

1Y ⊗ u⊗(n−k)
)

for every X ∈ L (Y ⊗Z), we have

σ =

(
n− k + d− 1

d− 1

) ∫
Φu(vv∗)dµ(u).

Now, our goal is to approximate σ by a density operator taking the form

∑
a∈Γ

p(a)ξ⊗k
a ,

so we will guess a suitable approximation:

τ =

(
n + d− 1

d− 1

) ∫ 〈
(uu∗)⊗k, Φu(vv∗)

〉
(uu∗)⊗k dµ(u).

It holds that τ has trace 1, because

Tr(τ) =
(

n + d− 1
d− 1

) ∫ 〈
(uu∗)⊗n, vv∗

〉
dµ(u) =

〈
S(n), vv∗

〉
= 1,

and τ also has the correct form:

τ ∈ conv
{
(ww∗)⊗k : w ∈ S

(
CΣ
)}

.

(It is intuitive that this should be so, but we have not proved it formally. Of course it can be
proved formally, but it requires details about measure and integration beyond what we have
discussed.)

We will now place an upper bound on ‖σ− τ‖1. To make the proof more readable, let us
write

cm =

(
m + d− 1

d− 1

)



for each m ≥ 0. We begin by noting that

‖σ− τ‖1 ≤
∥∥∥∥σ− cn−k

cn
τ

∥∥∥∥
1
+

∥∥∥∥ cn−k

cn
τ − τ

∥∥∥∥
1
= cn−k

∥∥∥∥ 1
cn−k

σ− 1
cn

τ

∥∥∥∥
1
+

(
1− cn−k

cn

)
. (22.3)

Next, by making use of the operator equality

A− BAB = A(1− B) + (1− B)A− (1− B)A(1− B),

and writing ∆u = (uu∗)⊗k, we obtain∥∥∥∥ 1
cn−k

σ− 1
cn

τ

∥∥∥∥
1
=

∥∥∥∥∫ (Φu(vv∗)− ∆uΦu(vv∗)∆u)dµ(u)
∥∥∥∥

1

≤
∥∥∥∥∫ Φu(vv∗)(1− ∆u)dµ(u)

∥∥∥∥
1
+

∥∥∥∥∫ (1− ∆u)Φu(vv∗)dµ(u)
∥∥∥∥

1

+

∥∥∥∥∫ (1− ∆u)Φu(vv∗)(1− ∆u)dµ(u)
∥∥∥∥

1
.

It holds that ∥∥∥∥∫ Φu(vv∗)(1− ∆u)dµ(u)
∥∥∥∥

1
=

∥∥∥∥∫ (1− ∆u)Φu(vv∗)dµ(u)
∥∥∥∥

1
,

while ∥∥∥∥∫ (1− ∆u)Φu(vv∗)(1− ∆u)dµ(u)
∥∥∥∥

1
= Tr

(∫
(1− ∆u)Φu(vv∗)(1− ∆u)dµ(u)

)
= Tr

(∫
(1− ∆u)Φu(vv∗)dµ(u)

)
≤
∥∥∥∥∫ (1− ∆u)Φu(vv∗)dµ(u)

∥∥∥∥
1

.

Therefore we have ∥∥∥∥ 1
cn−k

σ− 1
cn

τ

∥∥∥∥
1
≤ 3

∥∥∥∥∫ (1− ∆u)Φu(vv∗)dµ(u)
∥∥∥∥

1
.

At this point we note that ∫
Φu(vv∗)dµ(u) =

1
cn−k

σ

while ∫
∆uΦu(vv∗)dµ(u) = TrZ

∫
(uu∗)⊗nvv∗ dµ(u) =

1
cn

σ.

Therefore we have ∥∥∥∥ 1
cn−k

σ− 1
cn

τ

∥∥∥∥
1
≤ 3

(
1

cn−k
− 1

cn

)
,

and so

‖σ− τ‖1 ≤ 3 cn−k

(
1

cn−k
− 1

cn

)
+

(
1− cn−k

cn

)
= 4

(
1− cn−k

cn

)
.



To finish off the upper bound, we observe that

cn−k

cn
=

(n− k + d− 1)(n− k + d− 2) · · · (n− k + 1)
(n + d− 1)(n + d− 2) · · · (n + 1)

≥
(

n− k + 1
n + 1

)d−1

> 1− dk
n

,

and so
‖σ− τ‖1 <

4dk
n

.

This establishes essentially the bound given in the statement of the theorem, albeit only for pure
states, but with d2 replaced by d.

To prove the bound in the statement of the theorem for an arbitrary exchangeable density
operator ρ ∈ D (X1 ⊗ · · · ⊗ Xn), we first apply Lemma 22.1 to obtain a symmetric purification

v ∈ (X1 ⊗Y1)6 · · ·6 (Xn ⊗Yn)

of ρ, where Y1, . . . ,Yn represent isomorphic copies of X1, . . . ,Xn. By the argument above, we
have

‖σ− τ‖1 <
4d2k

n
,

where σ = TrZ (vv∗) for Z = (Xk+1 ⊗Yk+1)⊗ · · · ⊗ (Xn ⊗Yn) and where

τ ∈ conv
{
(uu∗)⊗k : u ∈ S

(
CΣ ⊗CΣ

)}
.

Taking the partial trace over Y1 ⊗ · · · ⊗ Yk then gives the result.
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