
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 21: Alternate characterizations of the completely
bounded trace norm

In the previous lecture we discussed the completely bounded trace norm, its connection to the
problem of distinguishing channels, and some of its basic properties. In this lecture we will
discuss a few alternate ways in which this norm may be characterized, including a semidefinite
programming formulation that allows for an efficient calculation of the norm.

21.1 Maximum output fidelity characterization

Suppose X and Y are complex Euclidean spaces and Φ0, Φ1 ∈ T (X ,Y) are completely positive
(but not necessarily trace-preserving) maps. Let us define the maximum output fidelity of Φ0 and
Φ1 as

Fmax(Φ0, Φ1) = max {F(Φ0(ρ0), Φ1(ρ1)) : ρ0, ρ1 ∈ D (X )} .

In other words, this is the maximum fidelity between an output of Φ0 and an output of Φ1,
ranging over all pairs of density operator inputs.

Our first alternate characterization of the completely bounded trace norm is based on the
maximum output fidelity, and is given by the following theorem.

Theorem 21.1. Let X and Y be complex Euclidean spaces and let Φ ∈ T (X ,Y) be an arbitrary mapping.
Suppose further that Z is a complex Euclidean space and A0, A1 ∈ L (X ,Y ⊗Z) satisfy

Φ(X) = TrZ (A0XA∗1)

for all X ∈ L (X ). For completely positive mappings Ψ0, Ψ1 ∈ T (X ,Z) defined as

Ψ0(X) = TrY (A0XA∗0) ,
Ψ1(X) = TrY (A1XA∗1) ,

for all X ∈ L (X ), we have |||Φ|||1 = Fmax(Ψ0, Ψ1).

Remark 21.2. Note that it is the space Y that is traced-out in the definition of Ψ0 and Ψ1, rather
than the space Z .

To prove this theorem, we will begin with the following lemma that establishes a simple
relationship between the fidelity and the trace norm. (This appeared as a problem on problem
set 1.)

Lemma 21.3. Let X and Y be complex Euclidean spaces and let u, v ∈ X ⊗Y . It holds that

F (TrY (uu∗), TrY (vv∗)) = ‖TrX (uv∗)‖1 .



Proof. It is the case that u ∈ X ⊗ Y is a purification of TrY (uu∗) and v ∈ X ⊗ Y is a purification
of TrY (vv∗). By the unitary equivalence of purifications (Theorem 4.3 in the lecture notes), it
holds that every purification of TrY (uu∗) in X ⊗ Y takes the form (1X ⊗U)u for some choice of
a unitary operator U ∈ U (Y). Consequently, by Uhlmann’s theorem we have

F (TrY (uu∗), TrY (vv∗)) = F (TrY (vv∗), TrY (uu∗)) = max{|〈v, (1X ⊗U)u〉| : U ∈ U (Y)}.

For any unitary operator U it holds that

〈v, (1X ⊗U)u〉 = Tr ((1X ⊗U)uv∗) = Tr (U TrX (uv∗)) ,

and therefore

max{|〈v, (1X ⊗U)u〉| : U ∈ U (Y)} = max{|Tr (U TrX (uv∗))| : U ∈ U (Y)} = ‖TrX (uv∗)‖1

as required.

Proof of Theorem 21.1. Let us take W to be a complex Euclidean space with the same dimension
as X , so that

|||Φ|||1 = max
{∥∥∥(Φ⊗ 1L(W))(uv∗)

∥∥∥
1

: u, v ∈ S (X ⊗W)
}

= max {‖TrZ [(A0 ⊗ 1W ) uv∗ (A∗1 ⊗ 1W )]‖1 : u, v ∈ S (X ⊗W)} .

For any choice of vectors u, v ∈ X ⊗W we have

TrY⊗W [(A0 ⊗ 1W )uu∗(A∗0 ⊗ 1W )] = Ψ0 (TrW (uu∗)) ,
TrY⊗W [(A1 ⊗ 1W )vv∗(A∗1 ⊗ 1W )] = Ψ1 (TrW (vv∗)) ,

and therefore by Lemma 21.3 it follows that

‖TrZ [(A0 ⊗ 1W )uv∗(A∗1 ⊗ 1W )]‖1 = F(Ψ0(TrW (uu∗)), Ψ1(TrW (vv∗))).

Consequently

|||Φ|||1 = max {F (Ψ0(TrW (uu∗)), Ψ1(TrW (vv∗))) : u, v ∈ S (X ⊗W)}
= max {F(Ψ0(ρ0), Ψ1(ρ1)) : ρ0, ρ1 ∈ D (X )}
= Fmax(Ψ0, Ψ1)

as required.

The following corollary follows immediately from this characterization along with the fact
that the completely bounded trace norm is multiplicative with respect to tensor products.

Corollary 21.4. Let Φ1, Ψ1 ∈ T (X1,Y1) and Φ2, Ψ2 ∈ T (X2,Y2) be completely positive. It holds that

Fmax(Φ1 ⊗Φ2, Ψ1 ⊗Ψ2) = Fmax(Φ1, Ψ1) · Fmax(Φ2, Ψ2).

This is a simple but not obvious fact: it says that the maximum fidelity between the outputs of
any two completely positive product mappings is achieved for product state inputs. In contrast,
several other quantities of interest based on quantum channels fail to respect tensor products in
this way.



21.2 A semidefinite program for the completely bounded trace norm (squared)

The square of the completely bounded trace norm of an arbitrary mapping Φ ∈ T (X ,Y) can be
expressed as the optimal value of a semidefinite program, as we will now verify. This provides
a means to efficiently approximate the completely bounded trace norm of a given mapping—
because there exist efficient algorithms to approximate the optimal value of very general classes
of semidefinite programs (which includes our particular semidefinite program) to high precision.

Let us begin by describing the semidefinite program, starting first with its associated primal
and dual problems. After doing this we will verify that its value corresponds to the square of
the completely bounded trace norm. Throughout this discussion we assume that a Stinespring
representation

Φ(X) = TrZ (A0XA∗1)

of an arbitrary mapping Φ ∈ T (X ,Y) has been fixed.

21.2.1 Description of the semidefinite program

The primal and dual problems for the semidefinite program we wish to consider are as follows:

Primal problem

maximize: 〈A1A∗1 , X〉
subject to: TrY (X) = TrY (A0ρA∗0) ,

ρ ∈ Pos (X ) ,
X ∈ Pos (Y ⊗Z) .

Dual problem

minimize: ‖A∗0(1Y ⊗Y)A0‖
subject to: 1Y ⊗Y ≥ A1A∗1 ,

Y ∈ Pos (Z) .

This pair of problems may be expressed more formally as a semidefinite program in the following
way. Define Ξ ∈ T ((Y ⊗Z)⊕X , C⊕Z) as follows:

Ξ
(

X ·
· ρ

)
=

(
Tr(ρ) 0

0 TrY (X)− TrY (A0ρA∗0)

)
.

(The submatrices indicated by · are ones we do not care about and do not bother to assign a
name.) We see that the primal problem above asks for the maximum (or supremum) value of〈(

A1A∗1 0
0 0

)
,
(

X ·
· ρ

)〉
subject to the constraints

Ξ
(

X ·
· ρ

)
=

(
1 0
0 0

)
and

(
X ·
· ρ

)
∈ Pos ((Y ⊗Z)⊕X ) .

The dual problem is therefore to minimize the inner product〈(
1 0
0 0

)
,
(

λ ·
· Y

)〉
,

for λ ≥ 0 and Y ∈ Pos (Z), subject to the constraint

Ξ∗
(

λ ·
· Y

)
≥
(

A1A∗1 0
0 0

)
.



One may verify that

Ξ∗
(

λ ·
· Y

)
=

(
1Y ⊗Y 0

0 λ1X − A∗0(1Y ⊗Y)A0

)
.

Given that Y is positive semidefinite, the minimum value of λ for which λ1X − A∗0(1Y ⊗Y)A0 ≥ 0
is equal to ‖A∗0(1Y ⊗Y)A0‖, and so we have obtained the dual problem as it is originally stated.

21.2.2 Analysis of the semidefinite program

We will now analyze the semidefinite program given above. Before we discuss its relationship to
the completely bounded trace norm, let us verify that it satisfies strong duality. The dual problem
is strictly feasible, for we may choose

Y = (‖A1A∗1‖+ 1)1Z and λ = ‖A1A∗1‖ ‖A0A∗0‖+ 1

to obtain a strictly feasible solution. The primal problem is of course feasible, for we may choose
ρ ∈ D (X ) arbitrarily and take X = A0ρA∗0 to obtain a primal feasible operator. Thus, by Slater’s
theorem, strong duality holds for our semidefinite program, and we also have that the optimal
primal value is obtained by a primal feasible operator.

Now let us verify that the optimal value associated with this semidefinite program corre-
sponds to |||Φ|||21. Let us define a set

A = {X ∈ Pos (Y ⊗Z) : TrY (X) = TrY (A0ρA∗0) for some ρ ∈ D (X )} .

It holds that the optimal primal value α of the semidefinite program is given by

α = max
X∈A
〈A1A∗1 , X〉 .

For any choice of a complex Euclidean spaceW for which dim(W) ≥ dim(X ), we have

|||Φ|||21 = max
u,v∈S(X⊗W)

‖TrZ [(A0 ⊗ 1W )uv∗(A1 ⊗ 1W )∗]‖2
1

= max
u,v∈S(X⊗W)
U∈U(Y⊗W)

|Tr [(U ⊗ 1Z )(A0 ⊗ 1W )uv∗(A1 ⊗ 1W )∗]|2

= max
u,v∈S(X⊗W)
U∈U(Y⊗W)

|v∗(A1 ⊗ 1W )∗(U ⊗ 1Z )(A0 ⊗ 1W )u|2

= max
u∈S(X⊗W)
U∈U(Y⊗W)

‖(A1 ⊗ 1W )∗(U ⊗ 1Z )(A0 ⊗ 1W )u‖2

= max
u∈S(X⊗W)
U∈U(Y⊗W)

Tr [(A1A∗1 ⊗ 1W )(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗]

= max
u∈S(X⊗W)
U∈U(Y⊗W)

〈A1A∗1 , TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗]〉 .

It now remains to prove that

A = {TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗] : u ∈ S (X ⊗W) , U ∈ U (Y ⊗W)}



for some choice ofW with dim(W) ≥ dim(X ). We will chooseW such that

dim(W) = max{dim(X ), dim(Y ⊗Z)}.

First consider an arbitrary choice of u ∈ S (X ⊗W) and U ∈ U (Y ⊗W), and let

X = TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗] .

It follows that TrY (X) = TrY (A0 TrW (uu∗)A∗0), and so X ∈ A. Now consider an arbitrary element
X ∈ A, and let ρ ∈ D (X ) satisfy TrY (X) = TrY (A0ρA∗0). Let u ∈ S (X ⊗W) purify ρ and let
x ∈ Y ⊗Z ⊗W purify X. We have

TrY⊗W (xx∗) = TrY⊗W ((A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗) ,

so there exists U ∈ U (Y ⊗W) such that (U ⊗ 1Z )(A0 ⊗ 1W )u = x, and therefore

X = TrW (xx∗) = TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗] .

We have therefore proved that

A = {TrW [(U ⊗ 1Z )(A0 ⊗ 1W )uu∗(A0 ⊗ 1W )∗(U ⊗ 1Z )
∗] : u ∈ S (X ⊗W) , U ∈ U (Y ⊗W)} ,

and so we have that the optimal primal value of our semidefinite program is α = |||Φ|||21 as
claimed.

21.3 Spectral norm characterization of the completely bounded trace norm

We will now use the semidefinite program from the previous section to obtain a different char-
acterization of the completely bounded trace norm. Let us begin with a definition, followed by a
theorem that states the characterization precisely.

Consider any mapping Φ ∈ T (X ,Y), for complex Euclidean spaces X and Y . For a given
choice of a complex Euclidean space Z , we have that there exists a Stinespring representation

Φ(X) = TrZ (A0XA∗1) ,

for some choice of A0, A1 ∈ L (X ,Y ⊗Z) if and only if dim(Z) ≥ rank(J(Φ)). Under the
assumption that dim(Z) ≥ rank(J(Φ)), we may therefore consider the non-empty set of pairs
(A0, A1) that represent Φ in this way:

SΦ = {(A0, A1) : A0, A1 ∈ L (X ,Y ⊗Z) , Φ(X) = TrZ (A0XA∗1) for all X ∈ L (X )} .

The characterization of the completely bounded trace norm that is established in this section
concerns the spectral norm of the operators in this set, and is given by the following theorem.

Theorem 21.5. Let X and Y be complex Euclidean spaces, let Φ ∈ T (X ,Y), and let Z be a complex
Euclidean space with dimension at least rank(J(Φ)). It holds that

|||Φ|||1 = inf {‖A0‖ ‖A1‖ : (A0, A1) ∈ SΦ} .



Proof. For any choice of operators A0, A1 ∈ L (X ,Y ⊗Z) and unit vectors u, v ∈ X ⊗W , we have

‖TrZ [(A0 ⊗ 1W )uv∗(A∗1 ⊗ 1W )]‖1 ≤ ‖(A0 ⊗ 1W )uv∗(A∗1 ⊗ 1W )‖1

≤ ‖A0 ⊗ 1W ‖ ‖uv∗‖1 ‖A1 ⊗ 1W ‖ = ‖A0‖ ‖A1‖ ,

which implies that |||Φ|||1 ≤ ‖A0‖ ‖A1‖ for all (A0, A1) ∈ SΦ, and consequently

|||Φ||| ≤ inf {‖A0‖ ‖A1‖ : (A0, A1) ∈ SΦ} .

It remains to establish the reverse inequality. Let (B0, B1) ∈ SΦ be an arbitrary pair of oper-
ators in L (X ,Y ⊗Z) giving a Stinespring representation for Φ. Given the description of |||Φ|||21
by the semidefinite program from the previous section, along with the fact that strong dual-
ity holds for that semidefinite program, we have that |||Φ|||21 is equal to the infimum value of
‖B∗0(1Y ⊗Y)B0‖ over all choices of Y ∈ Pos (Z) for which 1Y ⊗ Y ≥ B1B∗1 . This infimum value
does not change if we restrict Y to be positive definite, so that

|||Φ|||21 = inf{‖B∗0(1Y ⊗Y)B0‖ : 1Y ⊗Y ≥ B1B∗1 , Y ∈ Pd (Z)}.

For any ε > 0 we may therefore choose Y ∈ Pd (Z) such that 1Y ⊗Y ≥ B1B∗1 and∥∥∥(1Y ⊗Y1/2
)

B0

∥∥∥2
= ‖B∗0(1Y ⊗Y)B0‖ ≤ (|||Φ|||1 + ε)2 .

Note that the inequality 1Y ⊗Y ≥ B1B∗1 is equivalent to∥∥∥(1Y ⊗Y−1/2
)

B1

∥∥∥2
=
∥∥∥(1Y ⊗Y−1/2

)
B1B∗1

(
1Y ⊗Y−1/2

)∥∥∥ ≤ 1.

We therefore have that∥∥∥(1Y ⊗Y1/2
)

B0

∥∥∥ ∥∥∥(1Y ⊗Y−1/2
)

B1

∥∥∥ ≤ |||Φ|||1 + ε.

It holds that ((
1Y ⊗Y1/2

)
B0,

(
1Y ⊗Y−1/2

)
B1

)
∈ SΦ,

so
inf {‖A0‖ ‖A1‖ : (A0, A1) ∈ SΦ} ≤ |||Φ|||1 + ε.

This inequality holds for all ε > 0, and therefore

inf {‖A0‖ ‖A1‖ : (A0, A1) ∈ SΦ} ≤ |||Φ|||1
as required.

21.4 A different semidefinite program for the completely bounded trace norm

There are alternate ways to express the completely bounded trace norm as a semidefinite pro-
gram from the one described previously. Here is one alternative based on the maximum output
fidelity characterization from the start of the lecture.

As before, let X and Y be complex Euclidean spaces and let Φ ∈ T (X ,Y) be an arbitrary
mapping. Suppose further that Z is a complex Euclidean space and A0, A1 ∈ L (X ,Y ⊗Z)
satisfy

Φ(X) = TrZ (A0XA∗1)



for all X ∈ L (X ). Define completely positive mappings Ψ0, Ψ1 ∈ T (X ,Z) as

Ψ0(X) = TrY (A0XA∗0) ,
Ψ1(X) = TrY (A1XA∗1) ,

for all X ∈ L (X ), and consider the following semidefinite program:

Primal problem

maximize:
1
2

Tr(Y) +
1
2

Tr(Y∗)

subject to:

(
Ψ0(ρ0) Y

Y∗ Ψ1(ρ1)

)
≥ 0

ρ0, ρ1 ∈ D (X )

Y ∈ L (Z) .

Dual problem

minimize:
1
2
‖Ψ∗0(Z0)‖+

1
2
‖Ψ∗1(Z1)‖

subject to:

(
Z0 −1Z

−1Z Z1

)
≥ 0

Z0, Z1 ∈ Pos (Z) .

I will leave it to you to translate this semidefinite program into the formal definition we have
been using, and to verify that the dual problem is as stated. Note that the discussion of the
semidefinite program for the fidelity function from Lecture 8 is helpful for this task. In light of
that discussion, it is not difficult to see that the optimal primal value equals Fmax(Ψ0, Ψ1) = |||Φ|||1.
It may also be proved that strong duality holds, leading to an alternate proof of Theorem 21.5.
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