
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 18: The partial transpose and its relationship to
entanglement and distillation

In this lecture we will discuss the partial transpose mapping and its connection to entanglement
and distillation. Through this study, we will find that there exist bound-entangled states, which are
states that are entangled and yet have zero distillable entanglement.

18.1 The partial transpose and separability

Recall the Woronowicz–Horodecki criterion for separability: for complex Euclidean spaces X
and Y , we have that a given operator P ∈ Pos (X ⊗Y) is separable if and only if

(Φ⊗ 1L(Y))(P) ∈ Pos (Y ⊗ Y)

for every choice of a positive unital mapping Φ ∈ T (X ,Y). We note, however, that the restriction
of the mapping Φ to be both unital and to take the form Φ ∈ T (X ,Y) can be relaxed. Specifically,
the Woronowicz–Horodecki criterion implies the truth of the following two facts:

1. If P ∈ Pos (X ⊗Y) is separable, then for every choice of a complex Euclidean space Z and a
positive mapping Φ ∈ T (X ,Z), we have

(Φ⊗ 1L(Y))(P) ∈ Pos (Z ⊗Y) .

2. If P ∈ Pos (X ⊗Y) is not separable, there exists a positive mapping Φ ∈ T (X ,Z) that reveals
this fact, in the sense that

(Φ⊗ 1L(Y))(P) 6∈ Pos (Z ⊗Y) .

Moreover, there exists such a mapping Φ that is unital and for which Z = Y .

It is clear that the criterion illustrates a connection between separability and positive map-
pings that are not completely positive, for if Φ ∈ T (X ,Z) is completely positive, then

(Φ⊗ 1L(Y))(P) ∈ Pos (Z ⊗Y)

for every completely positive mapping Φ ∈ T (X ,Z), regardless of whether P is separable or not.
Thus far, we have only seen one example of a mapping that is positive but not completely

positive: the transpose. Let us recall that the transpose mapping T ∈ T (X ) on a complex
Euclidean space X is defined as

T(X) = XT

for all X ∈ L (X ). The positivity of T is clear: X ∈ Pos (X ) if and only if XT ∈ Pos (X ) for every
X ∈ L (X ). Assuming that X = CΣ, we have

T(X) = ∑
a,b∈Σ

Ea,bXEa,b = ∑
a,b∈Σ

Ea,bXE∗b,a



for all X ∈ L (X ). The Choi–Jamiołkowski representation of T is

J(T) = ∑
a,b∈Σ

Eb,a ⊗ Ea,b = W

where W ∈ U (X ⊗X ) denotes the swap operator. The fact that W is not positive semidefinite
shows that T is not completely positive.

When we refer to the partial transpose, we mean that the transpose mapping is tensored with
the identity mapping on some other space. We will use a similar notation to the partial trace: for
given complex Euclidean spaces X and Y , we define

TX = T ⊗ 1L(Y) ∈ T (X ⊗Y) .

More generally, the subscript refers to the space on which the transpose is performed.
Given that the transpose is positive, we may conclude the following from the Woronowicz–

Horodecki criterion for any choice of P ∈ Pos (X ⊗Y):

1. If P is separable, then TX (P) is necessarily positive semidefinite.

2. If P is not separable, then TX (P) might or might not be positive semidefinite, although
nothing definitive can be concluded from the criterion.

Another way to view these observations is that they describe a sort of one-sided test for entan-
glement:

1. If TX (P) is not positive semidefinite for a given P ∈ Pos (X ⊗Y), then P is definitely not
separable.

2. If TX (P) is positive semidefinite for a given P ∈ Pos (X ⊗Y), then P may or may not be
separable.

We have seen a specific example where the transpose indeed does identify entanglement: if Σ is
a finite, nonempty set of size n, and we take XA = CΣ and XB = CΣ, then

P =
1
n ∑

a,b∈Σ
Ea,b ⊗ Ea,b ∈ D (XA ⊗XB)

is certainly entangled, because

TXA(P) =
1
n

W 6∈ Pos (XA ⊗XB) .

We will soon prove that indeed there do exist entangled operators P ∈ Pos (XA ⊗XB) for
which TXA(P) ∈ Pos (XA ⊗XB), which means that the partial transpose does not give a simple
test for separability. It turns out, however, that the partial transpose does have an interesting
connection to entanglement distillation, as we will see later in the lecture.

For the sake of discussing this issue in greater detail, let us consider the following definition.
For any choice of complex Euclidean spaces XA and XB, we define

PPT (XA : XB) = {P ∈ Pos (XA ⊗XB) : TXA(P) ∈ Pos (XA ⊗XB)} .

The acronym PPT stands for positive partial transpose.



It is the case that the set PPT (XA : XB) is a closed convex cone. Let us also note that this
notion respects tensor products, meaning that if P ∈ PPT (XA : XB) and Q ∈ PPT (YA : YB), then

P⊗Q ∈ PPT (XA ⊗YA : XB ⊗YB) .

Finally, notice that the definition of PPT (XA : XB) does not really depend on the fact that the
partial transpose is performed on XA as opposed to XB. This follows from the observation that

T(TXA(X)) = TXB(X)

for every X ∈ L (XA ⊗XB), and therefore

TXA(X) ∈ Pos (XA ⊗XB) ⇔ TXB(X) ∈ Pos (XA ⊗XB) .

18.2 Examples of non-separable PPT operators

In this section we will discuss two examples of operators that are both entangled and PPT. This
shows that the partial transpose test does not give an efficient test for separability, and also
implies something interesting about entanglement distillation to be discussed in the next section.

18.2.1 First example

Let us begin by considering the following collection of operators, all of which act on the complex
Euclidean space CZn ⊗CZn for an integer n ≥ 2. We let

Wn = ∑
a,b∈Zn

Eb,a ⊗ Ea,b

denote the swap operator, which we have now seen several times. It satisfies Wn(u⊗ v) = v⊗ u
for all u, v ∈ CZn . Let us also define

Pn =
1
n ∑

a,b∈Zn

Ea,b ⊗ Ea,b , Rn =
1
2

1⊗ 1− 1
2

Wn ,

Qn = 1⊗ 1− Pn , Sn =
1
2

1⊗ 1 +
1
2

Wn.

(18.1)

It holds that Pn, Qn, Rn, and Sn are projection operators with Pn + Qn = Rn + Sn = 1⊗ 1. The
operator Rn is the projection onto the anti-symmetric subspace of CZn ⊗CZn and Sn is the projection
onto the symmetric subspace of CZn ⊗CZn .

We have that

(T ⊗ 1)(Pn) =
1
n

Wn and (T ⊗ 1)(1⊗ 1) = 1⊗ 1,

from which the following equations follow:

(T ⊗ 1)(Pn) = −
1
n

Rn +
1
n

Sn, (T ⊗ 1)(Rn) = −
n− 1

2
Pn +

1
2

Qn,

(T ⊗ 1)(Qn) =
n + 1

n
Rn +

n− 1
n

Sn, (T ⊗ 1)(Sn) =
n + 1

2
Pn +

1
2

Qn.



Now let us suppose we have registers X2, Y2, X3, and Y3, where

X2 = CZ2 , Y2 = CZ2 , X3 = CZ3 , Y3 = CZ3 .

In other words, X2 and Y2 are qubit registers, while X3 and Y3 are qutrit registers. We will
imagine the situation in which Alice holds registers X2 and X3, while Bob holds Y2 and Y3.

For every choice of α > 0, define

Xα = Q3 ⊗Q2 + αP3 ⊗ P2 ∈ Pos (X3 ⊗Y3 ⊗X2 ⊗Y2) .

Based on the above equations we compute:

TX3⊗X2(Xα) =

(
4
3

R3 +
2
3

S3

)
⊗
(

3
2

R2 +
1
2

S2

)
+ α

(
−1

3
R3 +

1
3

S3

)
⊗
(
−1

2
R2 +

1
2

S2

)
=

12 + α

6
R3 ⊗ R2 +

4− α

6
R3 ⊗ S2 +

6− α

6
S3 ⊗ R2 +

2 + α

6
S3 ⊗ S2.

Provided that α ≤ 4, we therefore have that Xα ∈ PPT (X3 ⊗X2 : Y3 ⊗Y2).
On the other hand, we have that

Xα 6∈ Sep (X3 ⊗X2 : Y3 ⊗Y2)

for every choice of α > 0, as we will now show. Define Ψ ∈ T (X2 ⊗Y2,X3 ⊗Y3) to be the unique
mapping for which J(Ψ) = Xα. Using the identity

Ψ(Y) = TrX2⊗Y2 [J(Ψ) (1⊗YT)]

we see that Ψ(P2) = αP3. So, for α > 0 we have that Ψ increases min-rank and is therefore not a
separable mapping. Thus, it is not the case that Xα is separable.

18.2.2 Unextendible product bases

The second example is based on the notion of an unextendible product basis. Although the construc-
tion works for any choice of an unextendible product basis, we will just consider one example.
Let X = CZ3 and Y = CZ3 , and consider the following 5 unit vectors in X ⊗Y :

u1 = |0〉 ⊗
(
|0〉 − |1〉√

2

)
u2 = |2〉 ⊗

(
|1〉 − |2〉√

2

)
u3 =

(
|0〉 − |1〉√

2

)
⊗ |2〉

u4 =

(
|1〉 − |2〉√

2

)
⊗ |0〉

u5 =

(
|0〉+ |1〉+ |2〉√

3

)
⊗
(
|0〉+ |1〉+ |2〉√

3

)

There are three relevant facts about this set for the purpose of our discussion:



1. The set {u1, . . . , u5} is an orthonormal set.

2. Each ui is a product vector, meaning ui = xi ⊗ yi for some choice of x1, . . . , x5 ∈ X and
y1, . . . , y5 ∈ Y .

3. It is impossible to find a sixth non-zero product vector v⊗ w ∈ X ⊗ Y that is orthogonal to
u1, . . . , u5.

To verify the third property, note that in order for a product vector v ⊗ w to be orthogonal to
any ui, it must be that 〈v, xi〉 = 0 or 〈w, yi〉 = 0. In order to have 〈v⊗ w, ui〉 for i = 1, . . . , 5 we
must therefore have 〈v, xi〉 = 0 for at least three distinct choices of i or 〈w, yi〉 = 0 for at least
three distinct choices of i. However, for any three distinct choices of indices i, j, k ∈ {1, . . . , 5} we
have span{xi, xj, xk} = X and span{yi, yj, yk} = Y , which implies that either v = 0 or w = 0, and
therefore v⊗ w = 0.

Now, define a projection operator P ∈ Pos (X ⊗Y) as

P = 1X⊗Y −
5

∑
i=1

uiu∗i .

Let us first note that P ∈ PPT (X : Y). For each i = 1, . . . , 5 we have

TX (uiu∗i ) = (xix∗i )
T ⊗ yiy∗i = xix∗i ⊗ yiy∗i = uiu∗i .

The second equality follows from the fact that each xi has only real coefficients, so xi = xi. Thus,

TX (P) = TX (1X⊗Y )−
5

∑
i=1

TX (uiu∗i ) = 1X⊗Y −
5

∑
i=1

uiu∗i = P ∈ Pos (X ⊗Y) ,

as claimed.
Now let us assume toward contradiction that P is separable. This implies that it is possible

to write

P =
m

∑
j=1

vjv∗j ⊗ wjw∗j

for some choice of v1, . . . , vm ∈ X and w1, . . . , wm ∈ Y . For each i = 1, . . . , 5 we have

0 = u∗i Pui =
m

∑
j=1

u∗i (vjv∗j ⊗ wjw∗j )ui.

Therefore, for each j = 1, . . . , m we have
〈
vj ⊗ wj, ui

〉
= 0 for i = 1, . . . , 5. This implies that

v1 ⊗ w1 = · · · = vm ⊗ wm = 0, and thus P = 0, establishing a contradiction. Consequently P is
not separable.

18.3 PPT states and distillation

The last part of this lecture concerns the relationship between the partial transpose and entan-
glement distillation. Our goal will be to prove that PPT states cannot be distilled, meaning that
the distillable entanglement is zero.

Let us begin the discussion with some further properties of PPT states that will be needed.
First we will observe that separable mappings respect the positivity of the partial transpose.



Theorem 18.1. Suppose P ∈ PPT (XA : XB) and Φ ∈ SepT (XA,YA : XB,YB) is a separable mapping.
It holds that Φ(P) ∈ PPT (YA : YB).

Proof. Consider any choice of operators A ∈ L (XA,YA) and B ∈ L (XB,YB). Given that P ∈
PPT (XA : XB), we have

TXA(P) ∈ Pos (XA ⊗XB)

and therefore
(1XA ⊗ B)TXA(P)(1XA ⊗ B∗) ∈ Pos (XA ⊗YB) .

The partial transpose on XA commutes with the conjugation by B, and therefore

TXA ((1XA ⊗ B)P(1XA ⊗ B∗) ∈ Pos (XA ⊗YB) .

This implies that

T (TXA ((1⊗ B)P(1⊗ B∗))) = TYB ((1⊗ B)P(1⊗ B∗)) ∈ Pos (XA ⊗YB)

as remarked in the first section of the lecture. Using the fact that conjugation by A commutes
with the partial transpose on YB, we have that

(A⊗ 1YB)TYB ((1⊗ B)P(1⊗ B∗) (A∗ ⊗ 1YB) = TYB ((A⊗ B)P(A∗ ⊗ B∗)) ∈ Pos (YA ⊗YB) .

We have therefore proved that (A⊗ B)P(A∗ ⊗ B∗) ∈ PPT (YA : YB).
Now, for Φ ∈ SepT (XA,YA : XB,YB), we have that Φ(P) ∈ PPT (YA : YB) by the above

observation together with the fact that PPT (YA : YB) is a convex cone.

Next, let us note that PPT states cannot have a large inner product with a maximally entangled
states.

Lemma 18.2. Let X and Y be complex Euclidean spaces and let n = min{dim(X ), dim(Y)}. For any
PPT density operator

ρ ∈ D (X ⊗Y) ∩ PPT (X : Y)

we have M(ρ) ≤ 1/n.

Proof. Let us assume, without loss of generality, that Y = CZn and dim(X ) ≥ n. Every maximally
entangled state on X ⊗Y may therefore be written

(U ⊗ 1Y )Pn(U ⊗ 1Y )
∗

for U ∈ U (Y ,X ) being a linear isometry, and where Pn is as defined in (18.1). We have that

〈(U ⊗ 1Y )Pn(U ⊗ 1Y )
∗, ρ〉 = 〈Pn, (U ⊗ 1Y )

∗ρ(U ⊗ 1Y )〉 ,

and that
(U ⊗ 1Y )

∗ρ(U ⊗ 1Y ) ∈ PPT (Y : Y)

is a PPT operator with trace at most 1. To prove the lemma it therefore suffices to prove that

〈Pn, ξ〉 ≤ 1
n

for every ξ ∈ D (Y ⊗ Y) ∩ PPT (Y : Y).



The partial transpose is its own adjoint and inverse, which implies that

〈(T ⊗ 1)(A), (T ⊗ 1)(B)〉 = 〈A, B〉

for any choice of operators A, B ∈ L (Y ⊗ Y). It is also clear that the partial transpose pre-
serves trace, which implies that (T ⊗ 1)(ξ) ∈ D (Y ⊗ Y) for every ξ ∈ D (Y ⊗ Y) ∩ PPT (Y : Y).
Consequently we have

〈Pn, ξ〉 = |〈Pn, ξ〉| = |〈(T ⊗ 1)(Pn), (T ⊗ 1)(ξ)〉| = 1
n
|〈Wn, (T ⊗ 1)(ξ)〉| ≤ 1

n
‖(T ⊗ 1)(ξ)‖1 =

1
n

,

where the inequality follows from the fact that Wn is unitary and the last equality follows from
the fact that (T ⊗ 1)(ξ) is a density operator.

Finally we are ready for the main result of the section, which states that PPT density operators
have no distillable entanglement.

Theorem 18.3. Let XA and XB be complex Euclidean spaces and let ρ ∈ D (XA ⊗XB)∩PPT (XA : XB).
It holds that Ed(ρ) = 0.

Proof. Let YA = C{0,1} and YB = C{0,1} be complex Euclidean spaces each corresponding to a
single qubit, as in the definition of distillable entanglement, and let τ ∈ D (YA ⊗YB) be the
density operator corresponding to a perfect e-bit.

Let α > 0 and let
Φn ∈ LOCC

(
X⊗n

A ,Y⊗bαnc
A : X⊗n

B ,Y⊗bαnc
B

)
be an LOCC channel for each n ≥ 1. This implies that Φn is a separable channel. Now, if
ρ ∈ PPT (XA : XB) then ρ⊗n ∈ PPT

(
X⊗n

A : X⊗n
B
)
, and therefore

Φn(ρ
⊗n) ∈ D

(
Y⊗bαnc

A ⊗Y⊗bαnc
B

)
∩ PPT

(
Y⊗bαnc

A : Y⊗bαnc
B

)
.

By Lemma 18.2 we therefore have that〈
τ⊗bαnc, Φn(ρ

⊗n)
〉
≤ 2−bαnc.

As we have assumed α > 0, this implies that

lim
n→∞

F
(

Φn(ρ
⊗n), τ⊗bαnc

)
= 0.

It follows that Ed(ρ) < α, and from this we conclude that Ed(ρ) = 0.
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