
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 17: Measures of entanglement

The topic of this lecture is measures of entanglement. The underlying idea throughout this discus-
sion is that entanglement may be viewed as a resource that is useful for various communication-
related tasks, such as teleportation, and we would like to quantify the amount of entanglement
that is contained in different states.

17.1 Maximum inner product with a maximally entangled state

We will begin with a simple quantity that relates to the amount of entanglement in a given state:
the maximum inner product with a maximally entangled state. It is not necessarily an interesting
concept in its own right, but it will be useful as a mathematical tool in the sections of this lecture
that follow.

Suppose X and Y are complex Euclidean spaces, and assume for the moment that dim(X ) ≥
dim(Y) = n. A maximally entangled state of a pair of registers (X,Y) to which these spaces are
associated is any pure state uu∗ for which

TrX (uu∗) =
1
n

1Y ;

or, in other words, tracing out the larger space leaves the completely mixed state on the other
register. Equivalently, the maximally entangled states are those that may be expressed as

1
n

vec(U) vec(U)∗

for some choice of a linear isometry U ∈ U (Y ,X ). If it is the case that n = dim(X ) ≤ dim(Y)
then the maximally entangled states are those states uu∗ such that

TrY (uu∗) =
1
n

1X ,

or equivalently those that can be written

1
n

vec(U∗) vec(U∗)∗

where U ∈ L (X ,Y) is a linear isometry. Quite frequently, the term maximally entangled refers
to the situation in which dim(X ) = dim(Y), where the two notions coincide. As is to be ex-
pected when discussing pure states, we sometimes refer to a unit vector u as being a maximally
entangled state, which means that uu∗ is maximally entangled.

Now, for an arbitrary density operator ρ ∈ D (X ⊗Y), let us define

M(ρ) = max{〈uu∗, ρ〉 : u ∈ X ⊗Y is maximally entangled}.

Clearly it holds that 0 < M(ρ) ≤ 1 for every density operator ρ ∈ D (X ⊗Y). The following
lemma establishes an upper bound on M(ρ) based on the min-rank of ρ.



Lemma 17.1. Let X and Y be complex Euclidean spaces, and let n = min{dim(X ), dim(Y)}. It holds
that

M(ρ) ≤ min-rank(ρ)
n

for all ρ ∈ D (X ⊗Y).

Proof. Let us assume dim(X ) ≥ dim(Y) = n, and note that the argument is equivalent in case
the inequality is reversed.

First let us note that M is a convex function on D (X ⊗Y). To see this, consider any choice of
σ, ξ ∈ D (X ⊗Y) and p ∈ [0, 1]. For U ∈ U (Y ,X ) we have

1
n

vec(U)∗ (pσ + (1− p)ξ) vec(U)

= p
1
n

vec(U)∗σ vec(U) + (1− p)
1
n

vec(U)∗ξ vec(U)

≤ pM(σ) + (1− p)M(ξ).

Maximizing over all U ∈ U (Y ,X ) establishes that M is convex as claimed.
Now, given that M is convex, we see that it suffices to prove the lemma by considering

only pure states. Every pure density operator on X ⊗ Y may be written as vec(A) vec(A)∗ for
A ∈ L (Y ,X ) satisfying ‖A‖2 = 1. We have

M (vec(A) vec(A)∗) =
1
n

max
U∈U(Y ,X )

|〈U, A〉|2 =
1
n
‖A‖2

1 .

Given that
‖A‖1 ≤

√
rank(A) ‖A‖2

for every operator A, the lemma follows.

17.2 Entanglement cost and distillable entanglement

We will now discuss two fundamental measures of entanglement: the entanglement cost and the
distillable entanglement. For the remainder of the lecture, let us take

YA = C{0,1} and YB = C{0,1}

to be complex Euclidean spaces corresponding to single qubits, and let τ ∈ D (YA ⊗YB) denote
the density operator

τ =
1
2
(e0 ⊗ e0 + e1 ⊗ e1)(e0 ⊗ e0 + e1 ⊗ e1)

∗,

which may be more recognizable to some when expressed in the Dirac notation as

τ =
∣∣φ+

〉 〈
φ+
∣∣ for

∣∣φ+
〉
=

1√
2
|00〉+ 1√

2
|11〉 .

We view that the state τ represents one unit of entanglement, typically called an e-bit of entan-
glement.



17.2.1 Definition of entanglement cost

The first measure of entanglement we will consider is called the entanglement cost. Informally
speaking, the entanglement cost of a density operator ρ ∈ D (XA ⊗XB) represents the number
of e-bits Alice and Bob need to share in order to create a copy of ρ by means of an LOCC
operation with high fidelity. It is an information-theoretic quantity, so it must be understood to be
asymptotic in nature—where one amortizes over many parallel repetitions of such a conversion.
The following definition states this more precisely.

Definition 17.2. The entanglement cost of a density operator ρ ∈ D (XA ⊗XB), denoted Ec(ρ), is
the infimum over all real numbers α ≥ 0 for which there exists a sequence of LOCC channels
{Φn : n ∈N}, where

Φn ∈ LOCC
(
Y⊗bαnc

A ,X⊗n
A : Y⊗bαnc

B ,X⊗n
B

)
,

such that
lim
n→∞

F
(

Φn

(
τ⊗bαnc

)
, ρ⊗n

)
= 1.

The interpretation of the definition is that, in the limit of large n, Alice and Bob are able
to convert bαnc e-bits into n copies of ρ with high fidelity for any α > Ec(ρ). It is not entirely
obvious that there should exist any value of α for which there exists a sequence of LOCC channels
{Φn : n ∈N} as in the statement of the definition, but indeed there always does exist a suitable
choice of α.

17.2.2 Definition of distillable entanglement

The second measure of entanglement we will consider is the distillable entanglement, which is
essentially the reverse of the entanglement cost. It quantifies the number of e-bits that Alice and
Bob can extract from the state in question, again amortized over many copies.

Definition 17.3. The distillable entanglement of a density operator ρ ∈ D (XA ⊗XB), denoted
Ed(ρ), is the supremum over all real numbers α ≥ 0 for which there exists a sequence of LOCC
channels {Φn : n ∈N}, where

Φn ∈ LOCC
(
X⊗n

A ,Y⊗bαnc
A : X⊗n

B ,Y⊗bαnc
B

)
,

such that
lim
n→∞

F
(

Φn
(
ρ⊗n) , τ⊗bαnc

)
= 1.

The interpretation of the definition is that, in the limit of large n, Alice and Bob are able to
convert n copies of ρ into bαnc e-bits with high fidelity for any α < Ed(ρ). In order to clarify the
definition, let us state explicitly that the operator τ⊗0 is interpreted to be the scalar 1, implying
that condition in the lemma is trivially satisfied for α = 0.

17.2.3 The distillable entanglement is at most the entanglement cost

At an intuitive level it is clear that the entanglement cost must be at least as large as the distillable
entanglement, for otherwise Alice and Bob would be able to open an “entanglement factory” that
would violate the principle that LOCC channels cannot create entanglement out of thin air. Let
us now prove this formally.



Theorem 17.4. For every state ρ ∈ D (XA ⊗XB) we have Ed(ρ) ≤ Ec(ρ).

Proof. Let us assume that α and β are nonnegative real numbers such that the following two
properties are satisfied:

1. There exists a sequence of LOCC channels {Φn : n ∈N}, where

Φn ∈ LOCC
(
Y⊗bαnc

A ,X⊗n
A : Y⊗bαnc

B ,X⊗n
B

)
,

such that
lim
n→∞

F
(

Φn

(
τ⊗bαnc

)
, ρ⊗n

)
= 1.

2. There exists a sequence of LOCC channels {Ψn : n ∈N}, where

Ψn ∈ LOCC
(
X⊗n

A ,Y⊗bβnc
A : X⊗n

B ,Y⊗bβnc
B

)
,

such that
lim
n→∞

F
(

Ψn
(
ρ⊗n) , τ⊗bβnc

)
= 1.

Using the Fuchs–van de Graaf inequalities, along with triangle inequality for the trace norm,
we conclude that

lim
n→∞

F
(
(ΨnΦn)

(
τ⊗bαnc

)
, τ⊗bβnc

)
= 1. (17.1)

Because min-rank(τ⊗k) = 2k for every choice of k ≥ 1, and LOCC channels cannot increase
min-rank, we have that

F
(
(ΨnΦn)

(
τ⊗bαnc

)
, τ⊗bβnc

)2
≤ 2bαnc−bβnc (17.2)

by Lemma 17.1. By equations (17.1) and (17.2), we therefore have that α ≥ β.
Given that Ec(ρ) is the infimum over all α, and Ed(ρ) is the supremum over all β, with the

above properties, we have that Ec(ρ) ≥ Ed(ρ) as required.

17.3 Pure state entanglement

The remainder of the lecture will focus on the entanglement cost and distillable entanglement for
bipartite pure states. In this case, these measures turn out to be identical, and coincide precisely
with the von Neumann entropy of the reduced state of either subsystem.

Theorem 17.5. Let XA and XB be complex Euclidean spaces and let u ∈ XA ⊗ XB be a unit vector. It
holds that Ec(uu∗) = Ed(uu∗) = S(TrXA(uu∗)) = S(TrXB(uu∗)).

Proof. The proof will start with some basic observations about the vector u that will be used to
calculate both the entanglement cost and the distillable entanglement. First, let

u = ∑
a∈Σ

√
p(a) va ⊗ wa

be a Schmidt decomposition of u, so that

TrXB(uu∗) = ∑
a∈Σ

p(a) vav∗a and TrXA(uu∗) = ∑
a∈Σ

p(a)waw∗a .



We have that p ∈ RΣ is a probability vector, and S(TrXA(uu∗)) = H(p) = S(TrXB(uu∗)). Let us
assume hereafter that H(p) > 0, for the case H(p) = 0 corresponds to the situation where u is
separable (in which case the entanglement cost and distillable entanglement are both easily seen
to be 0).

We will make use of concepts regarding compression that were discussed in Lecture 9. Recall
that for each choice of n and ε > 0, we denote by Tn,ε ⊆ Σn the set of ε-typical sequences of length
n with respect to the probability vector p:

Tn,ε =
{

a1 · · · an ∈ Σn : 2−n(H(p)+ε) < p(a1) · · · p(an) < 2−n(H(p)−ε)
}

.

For each n ∈N and ε > 0, let us define a vector

xn,ε = ∑
a1···an∈Tn,ε

√
p(a1) · · · p(an) (va1 ⊗ wa1)⊗ · · · ⊗ (van ⊗ wan) ∈ (XA ⊗XB)

⊗n.

We have
‖xn,ε‖2 = ∑

a1···an∈Tn,ε

p(a1) · · · p(an),

which is the probability that a random choice of a1 · · · an is ε-typical with respect to the probabil-
ity vector p. It follows that limn→∞ ‖xn,ε‖ = 1 for any choice of ε > 0. Let

yn,ε =
xn,ε

‖xn,ε‖

denote the normalized versions of these vectors.
Next, consider the vector of eigenvalues

λ
(

TrX⊗n
B

(
xn,εx∗n,ε

))
.

The nonzero eigenvalues are given by the probabilities for the various ε-typical sequences, and
so

2−n(H(p)+ε) < λj

(
TrX⊗n

B

(
xn,εx∗n,ε

))
< 2−n(H(p)−ε)

for j = 1, . . . , |Tn,ε |. (The remaining eigenvalues are 0.) It follows that

2−n(H(p)+ε)

‖xn,ε‖2 < λj

(
TrX⊗n

B

(
yn,εy∗n,ε

))
<

2−n(H(p)−ε)

‖xn,ε‖2

for j = 1, . . . , |Tn,ε |, and again the remaining eigenvalues are 0.
Let us now consider the entanglement cost of uu∗. We wish to show that for every real

number α > H(p) there exists a sequence {Φn : n ∈N} of LOCC channels such that

lim
n→∞

F
(

Φn

(
τ⊗bαnc

)
, (uu∗)⊗n

)
= 1. (17.3)

We will do this by means of Nielsen’s theorem. Specifically, let us choose ε > 0 so that α >
H(p) + 2ε, from which it follows that bαnc ≥ n(H(p) + ε) for sufficiently large n. We have

λj

(
TrY⊗bαnc

B

(
τ⊗bαnc

))
= 2−bαnc



for j = 1, . . . , 2bαnc. Given that

2−n(H(p)+ε)

‖xn,ε‖2 ≥ 2−n(H(p)+ε) ≥ 2−bαnc,

for sufficiently large n, it follows that

TrY⊗bαnc
B

(
τ⊗bαnc

)
≺ TrX⊗n

B

(
yn,εy∗n,ε

)
. (17.4)

This means that τ⊗bαnc can be converted to yn,εy∗n,ε by means of an LOCC channel Φn by Nielsen’s
theorem. Given that

lim
n→∞

F
(

yn,εy∗n,ε , (uu∗)⊗n
)
= 1

this implies that the required equation (17.3) holds. Consequently Ec (uu∗) ≤ H(p).
Next let us consider the distillable entanglement, for which a similar argument is used. Our

goal is to prove that for every α < H(p), there exists a sequence {Ψn : n ∈N} of LOCC channels
such that

lim
n→∞

F
(

Ψn
(
(uu∗)⊗n) , τ⊗bαnc

)
= 1. (17.5)

In this case, let us choose ε > 0 small enough so that α < H(p)− 2ε. For sufficiently large n we
have

2bαnc ≤ ‖xn,ε‖2 2n(H(p)−ε).

Similar to above, we therefore have

TrX⊗n
B

(
yn,εy∗n,ε

)
≺ TrY⊗bαnc

B

(
τ⊗bαnc

)
,

which implies that the state yn,εy∗n,ε can be converted to the state τ⊗bαnc by means of an LOCC
channel Ψn for sufficiently large n. Given that

lim
n→∞

∥∥(uu∗)⊗n − yn,εy∗n,ε
∥∥

1 = 0

it follows that

lim
n→∞

∥∥∥Ψn
(
(uu∗)⊗n)− τ⊗bαnc

∥∥∥
1

≤ lim
n→∞

(∥∥Ψn
(
(uu∗)⊗n)−Ψn

(
yn,εy∗n,ε

)∥∥
1 +

∥∥∥Ψn
(
yn,εy∗n,ε

)
− τ⊗bαnc

∥∥∥
1

)
= 0,

which establishes the above equation (17.5). Consequently, Ed (uu∗) ≥ H(p).
We have shown that

Ec(uu∗) ≤ H(p) ≤ Ed(uu∗).

As Ed(uu∗) ≤ Ec(uu∗), the equality in the statement of the theorem follows.
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