
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 16: Nielsen’s theorem on pure state
entanglement transformation

In this lecture we will consider pure-state entanglement transformation. The setting is as follows:
Alice and Bob share a pure state x ∈ XA ⊗ XB, and they would like to transform this state to
another pure state y ∈ YA ⊗YB by means of local operations and classical communication. This
is possible for some choices of x and y and impossible for others, and what we would like is to
have a condition on x and y that tells us precisely when it is possible. Nielsen’s theorem, which
we will prove in this lecture, provides such a condition.

Theorem 16.1 (Nielsen’s theorem). Let x ∈ XA ⊗XB and y ∈ YA ⊗YB be unit vectors, for any choice
of complex Euclidean spaces XA, XB, YA, and YB. There exists a channel Φ ∈ LOCC (XA,YA : XB,YB)
such that Φ(xx∗) = yy∗ if and only if TrXB (xx∗) ≺ TrYB (yy∗).

It may be that XA and YA do not have the same dimension, so the relationship

TrXB (xx∗) ≺ TrYB (yy∗)

requires an explanation. In general, given positive semidefinite operators P ∈ Pos (X ) and
Q ∈ Pos (Y), we define that P ≺ Q if and only if

VPV∗ ≺WQW∗ (16.1)

for some choice of a complex Euclidean space Z and isometries V ∈ U (X ,Z) and W ∈ U (Y ,Z).
If the above condition (16.1) holds for one such choice of Z and isometries V and W, it holds for
all other possible choices of these objects. In particular, one may always take Z to have dimension
equal to the larger of dim(X ) and dim(Y).

In essence, this interpretation is analogous to padding vectors with zeroes, as is done when we
wish to consider the majorization relation between vectors of nonnegative real numbers having
possibly different dimensions. In the operator case, the isometries V and W embed the operators
P and Q into a single space so that they may be related by our definition of majorization.

It will be helpful to note that if P ∈ Pos (X ) and Q ∈ Pos (Y) are positive semidefinite
operators, and P ≺ Q, then it must hold that rank(P) ≥ rank(Q). One way to verify this claim is
to examine the vectors of eigenvalues λ(P) and λ(Q), whose nonzero entries agree with λ(VPV∗)
and λ(WQW∗) for any choice of isometries V and W, and to note that Theorem 13.2 implies that
λ(WQW∗) cannot possibly majorize λ(VPV∗) if λ(Q) has strictly more nonzero entries than
λ(P). An alternate way to verify the claim is to note that mixed unitary channels can never
decrease the rank of any positive semidefinite operator. It follows from this observation that if
P ∈ Pd (X ) and Q ∈ Pd (Y) are positive definite operators, and P ≺ Q, then dim(X ) ≥ dim(Y).
The condition P ≺ Q is therefore equivalent to the existence of an isometry W ∈ U (Y ,X ) such
that P ≺WQW∗ in this case.



The remainder of this lecture will be devoted to proving Nielsen’s theorem. For the sake of
the proof, it will be helpful to make a simplifying assumption, which causes no loss of generality.
The assumption is that these equalities hold:

dim(XA) = rank (TrXB(xx∗)) = dim(XB),
dim(YA) = rank (TrYB(yy∗)) = dim(YB).

That we can make this assumption follow from a consideration of Schmidt decompositions of x
and y:

x =
m

∑
j=1

√
pjxA,j ⊗ xB,j and y =

n

∑
k=1

√
qkyA,k ⊗ yB,k,

where p1, . . . , pm > 0 and q1, . . . , qn > 0, so that m = rank (TrXB(xx∗)) and n = rank (TrYB(yy∗)).
By restricting XA to span{xA,1, . . . , xA,m}, XB to span{xB,1, . . . , xB,m}, YA to span{yA,1, . . . , yA,n},
and YB to span{yB,1, . . . , yB,n}, we have that the spaces XA, XB, YA, and YB are only as large in
dimension as they need to be to support the vectors x and y. The reason why this assumption
causes no loss of generality is that neither the notion of an LOCC channel transforming xx∗ to
yy∗, nor the majorization relationship TrXB (xx∗) ≺ TrYB (yy∗), is sensitive to the possibility that
the ambient spaces in which xx∗ and yy∗ exist are larger than necessary to support x and y.

16.1 The easier implication: from mixed unitary channels to LOCC channels

We will begin with the easier implication of Nielsen’s theorem, which states that the majorization
relationship

TrXB (xx∗) ≺ TrYB (yy∗) (16.2)

implies the existence of an LOCC channel mapping xx∗ to yy∗. To prove the implication, let us
begin by letting X ∈ L (XB,XA) and Y ∈ L (YB,YA) satisfy

x = vec(X) and y = vec(Y),

so that (16.2) is equivalent to XX∗ ≺ YY∗. The assumption dim(XA) = rank (TrXB(xx∗)) =
dim(XB) implies that XX∗ is positive definite (and therefore X is invertible). Likewise, the
assumption dim(YA) = rank (TrYB(yy∗)) = dim(YB) implies that YY∗ is positive definite. It
follows that

XX∗ = Ψ(WYY∗W∗)

for some choice of an isometry W ∈ U (YA,XA) and a mixed unitary channel Ψ ∈ C (XA). Let
us write this channel as

Ψ(ρ) = ∑
a∈Σ

p(a)UaρU∗a

for Σ being a finite and nonempty set, p ∈ RΣ being a probability vector, and {Ua : a ∈ Σ} ⊂
U (XA) being a collection of unitary operators.

Next, define a channel Ξ ∈ C (XA ⊗XB,XA ⊗YB) as

Ξ(ρ) = ∑
a∈Σ

(
U∗a ⊗ Ba

)
ρ
(
U∗a ⊗ Ba

)∗
for each ρ ∈ L (XA ⊗XB), where Ba ∈ L (XB,YB) is defined as

Ba =
√

p(a)
(

X−1UaWY
)∗



for each a ∈ Σ. It holds that

∑
a∈Σ

B∗a Ba = ∑
a∈Σ

p(a)X−1UaWYY∗W∗U∗a (X−1)
∗
= X−1Ψ (WYY∗W∗) (X−1)

∗
= 1XA ,

and therefore
∑
a∈Σ

BT
a Ba = ∑

a∈Σ
B∗a Ba = 1XA .

It follows that Ξ is trace-preserving, because

∑
a∈Σ

(
U∗a ⊗ Ba

)∗ (U∗a ⊗ Ba
)
= ∑

a∈Σ

(
1XA ⊗ BT

a Ba
)
= 1XA ⊗ 1XA .

The channel Ξ is, in fact, an LOCC channel. To implement it as an LOCC channel, Bob may
first apply the local channel

ξ 7→ ∑
a∈Σ

Ea,a ⊗ BaξBT
a ,

which has the form of a mapping from L (XB) to L (Z ⊗YB) for Z = CΣ. He then sends the
register Z corresponding to the space Z through a classical channel to Alice. Alice then performs
the local channel given by

σ 7→ ∑
b∈Σ

(U∗b ⊗ e∗b) σ (U∗b ⊗ e∗b)
∗ ,

which has the form of a mapping from L (XA ⊗Z) to L (XA). The composition of these three
channels is given by Ξ, which shows that Ξ ∈ LOCC (XA,XA : XB,YB) as claimed.

The channel Ξ almost satisfies the requirements of the theorem, for we have

Ξ(xx∗) = ∑
a∈Σ

(
U∗a ⊗ Ba

)
vec(X) vec(X)∗

(
U∗a ⊗ Ba

)∗
= ∑

a∈Σ
vec (U∗a XB∗a ) vec (U∗a XB∗a )

∗

= ∑
a∈Σ

p(a) vec
(

U∗a XX−1UaWY
)

vec
(

U∗a XX−1UaWY
)∗

= vec(WY) vec(WY)∗

= (W ⊗ 1YB)yy∗(W ⊗ 1YB)
∗.

That is, Ξ transforms xx∗ to yy∗, followed by the isometry W being applied to Alice’s space YA,
embedding it in XA. To “undo” this embedding, Alice may apply the channel

ξ 7→W∗ξW + 〈1YA −WW∗, ξ〉 σ (16.3)

to her portion of the state (W ⊗ 1YB)yy∗(W ⊗ 1YB)
∗, where σ ∈ D (YA) is an arbitrary density

matrix that has no influence on the proof. Letting Φ ∈ C (XA ⊗XB,YA ⊗YB) be the channel
that results from composing (16.3) with Ξ, we have that Φ is an LOCC channel and satisfies
Φ(xx∗) = yy∗ as required.



16.2 The harder implication: from LOCC channels to mixed unitary channels

The reverse implication, from the one proved in the previous section, states that if Φ(xx∗) = yy∗

for an LOCC channel Φ ∈ C (XA,YA : XB,YB), then TrXB (xx∗) ≺ TrYB (yy∗). The main difficulty
in proving this fact is that our proof must account for all possible LOCC channels, which do
not admit a simple mathematical characterization (so far as anyone knows). For instance, a
given LOCC channel could potentially require a composition of 1,000,000 channels that alternate
between product channels and classical communication channels, possibly without any shorter
composition yielding the same channel.

However, in the situation that we only care about the action of a given LOCC channel on a
single pure state—such as the state xx∗ being considered in the context of the implication we are
trying to prove—LOCC channels can always be reduced to a very simple form. To describe this
form, let us begin by defining a restricted class of LOCC channels, acting on the space of opera-
tors L (ZA ⊗ZB) for any fixed choice of complex Euclidean spaces ZA and ZB, as follows.

1. A channel Φ ∈ C (ZA ⊗ZB) will be said to be an A→B channel if there exists a finite and
nonempty set Σ, a collection of operators {Aa : a ∈ Σ} ⊂ L (ZA) satisfying the constraint

∑
a∈Σ

A∗a Aa = 1ZA ,

and a collection of unitary operators {Ua : a ∈ Σ} ⊂ U (ZB) such that

Φ(ρ) = ∑
a∈Σ

(Aa ⊗Ua)ρ(Aa ⊗Ua)
∗.

One imagines that such an operation represents the situation where Alice performs a non-
destructive measurement represented by the collection {Aa : a ∈ Σ}, transmits the result to
Bob, and Bob applies a unitary channel to his system that depends on Alice’s measurement
result.

2. A channel Φ ∈ C (ZA ⊗ZB) will be said to be a B→A channel if there exists a finite and
nonempty set Σ, a collection of operators {Ba : a ∈ Σ} ⊂ L (ZB) satisfying the constraint

∑
a∈Σ

B∗a Ba = 1ZB ,

and a collection of unitary operators {Va : a ∈ Σ} ⊂ U (ZA) such that

Φ(ρ) = ∑
a∈Σ

(Va ⊗ Ba)ρ(Va ⊗ Ba)
∗.

Such a channel is analogous to an A→B channel, but where the roles of Alice and Bob are
reversed. (The channel constructed in the previous section had this basic form, although the
operators {Ba} were not necessarily square in that case.)

3. Finally, a channel Φ ∈ C (ZA ⊗ZB) will be said to be a restricted LOCC channel if it is a
composition of A→B and B→A channels.

It should be noted that the terms A→B channel, B→A channel, and restricted LOCC channel are
being used for the sake of this proof only: they are not standard terms, and will not be used
elsewhere in the course.



It is not difficult to see that every restricted LOCC channel is an LOCC channel, using a
similar argument to the one showing that the channel Ξ from the previous section was indeed
an LOCC channel. As the following theorem shows, restricted LOCC channels turn out to be as
powerful as general LOCC channels, provided they are free to act on sufficiently large spaces.

Theorem 16.2. Suppose Φ ∈ LOCC (XA,YA : XB,YB) is an LOCC channel. There exist complex
Euclidean spaces ZA and ZB, linear isometries

VA ∈ U (XA,ZA) , WA ∈ U (YA,ZA) , VB ∈ U (XB,ZB) , WB ∈ U (YB,ZB) ,

and a restricted LOCC channel Ψ ∈ C (ZA ⊗ZB) such that

(WA ⊗WB)Φ(ρ)(WA ⊗WB)
∗ = Ψ ((VA ⊗VB)ρ(VA ⊗VB)

∗) (16.4)

for all ρ ∈ L (XA ⊗XB).

Remark 16.3. Before we prove this theorem, let us consider what it is saying. Alice’s input space
XA and output space YA may have different dimensions, but we want to view these two spaces
as being embedded in a single space ZA. The isometries VA and WA describe these embeddings.
Likewise, VB and WB describe the embeddings of Bob’s input and output spaces XB and YB in
a single space ZB. The above equation (16.4) simply means that Ψ correctly represents Φ in
terms of these embeddings: Alice and Bob could either embed the input ρ ∈ L (XA ⊗XB) in
L (ZA ⊗ZB) as (VA ⊗VB)ρ(VA ⊗VB)

∗, and then apply Ψ; or they could first perform Φ and then
embed the output Φ(ρ) into L (ZA ⊗ZB) as (WA ⊗WB)Φ(ρ)(WA ⊗WB)

∗. The equation (16.4)
means that they obtain the same thing either way.

Proof. Let us suppose that Φ is a composition of mappings

Φ = Φn−1 · · ·Φ1,

where each mapping Φk takes the form

Φk ∈ LOCC
(
X k

A,X k+1
A : X k

B,X k+1
B

)
,

and is either a local operation for Alice, a local operation for Bob, a classical communication from
Alice to Bob, or a classical communication from Bob to Alice. Here we assume

X 1
A = XA, X 1

B = XB, X n
A = YA, and X n

B = YB;

the remaining spaces are arbitrary, so long as they have forms that are appropriate to the choices
Φ1, . . . , Φn−1. For instance, if Φk is a local operation for Alice, then X k

B = X k+1
B , while if Φk is

a classical communication from Alice to Bob, then X k
A = X k+1

A ⊗Wk and X k+1
B = X k

B ⊗Wk for
Wk representing the system that stores the classical information communicated from Alice to
Bob. There is no loss of generality in assuming that every such Wk takes the form Wk = CΓ for
some fixed finite and non-empty set Γ, chosen to be large enough to account for any one of the
message transmissions among the mappings Φ1, . . . , Φn−1.

We will take
ZA = X 1

A ⊕ · · · ⊕ X n
A and ZB = X 1

B ⊕ · · · ⊕ X n
B .

These spaces will generally not have minimal dimension among the possible choices that would
work for the proof, but they are convenient choices that allow for a simple presentation of the



proof. Let us also define isometries VA,k ∈ U
(
X k

A,ZA
)

and VB,k ∈ U
(
X k

B,ZB
)

to be the most
straightforward ways of embedding X k

A into ZA and X k
B into ZB, i.e.,

VA,kxk = 0⊕ · · · ⊕ 0︸ ︷︷ ︸
k− 1 times

⊕xk ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸
n− k times

for every choice of k = 1, . . . , n and x1 ∈ X 1
A, . . . , xn ∈ X n

A, and likewise for VB,1, . . . , VB,n.
Suppose Φk is a local operation for Alice. This means that there exist a collection of operators

{Ak,a : a ∈ Σ} ⊂ L
(
X k

A,X k+1
A

)
such that

∑
a∈Σ

A∗k,a Ak,a = 1X k
A

and
Φk(ρ) = ∑

a∈Σ

(
Ak,a ⊗ 1X k

B ,X k+1
B

)
ρ
(

Ak,a ⊗ 1X k
B ,X k+1

B

)∗
.

This expression refers to the identity mapping from X k
B to X k+1

B , which makes sense if we keep
in mind that these spaces are equal (given that Φk is a local operation for Alice). We wish to
extend this mapping to an A→B channel on L (ZA ⊗ZB). Let

{Bk,b : b ∈ ∆} ⊂ L
(
X k+1

A ,X k
A

)
be an arbitrary collection of operators for which

∑
b∈∆

B∗k,bBk,b = 1X k+1
A

,

and define Ck,a,b ∈ L (ZA) as

Ck,a,b =



1X 1
A

1X 2
A

. . .

0 Bk,b

Ak,a 0
1X k+2

A
. . .

1X n
A


for each a ∈ Σ and b ∈ ∆, define Uk ∈ U (ZB) as

Uk =



1X 1
A

1X 2
A

. . .

0 1X k+1
B ,X k

B

1X k
B ,X k+1

B
0

1X k+2
A

. . .

1X n
A


,



and define
Ξk(σ) = ∑

a∈Σ
b∈∆

(Ck,a,b ⊗Uk) ρ (Ck,a,b ⊗Uk)
∗ .

(In both of the matrices above, empty entries are to be understood as containing zero operators
of the appropriate dimensions.) It holds that Ξk is an A→B channel, and it may be verified that

Ξk ((VA,k ⊗VB,k)ρ(VA,k ⊗VB,k)
∗) = (VA,k+1 ⊗VB,k+1)Φk(ρ)(VA,k+1 ⊗VB,k+1)

∗ (16.5)

for every ρ ∈ L
(
X k

A ⊗X k
B
)
.

In case Φk is a local operation for Bob rather than Alice, we define Ξk to be a B→ A channel
through a similar process, where the roles of Alice and Bob are reversed. The equality (16.5)
holds in this case through similar reasoning.

Now suppose that Φk is a classical message transmission from Alice to Bob. As stated above,
we assume that X k

A = X k+1
A ⊗CΓ and X k+1

B = X k
B ⊗CΓ. Define

Ck,a =



1X 1
A

1X 2
A

. . .

0 1X k+1
A
⊗ ea

1X k+1
A
⊗ e∗a 0

1X k+2
A

. . .

1X n
A


for each a ∈ Γ, define Uk,a ∈ U (ZB) as

Uk,a =



1X 1
A

1X 2
A

. . .

0 1X k+1
B
⊗ e∗a

1X k
B
⊗ ea 1X k+1

B
⊗Πa

1X k+2
A

. . .

1X n
A


,

where
Πa = ∑

b∈Γ
b 6=a

Eb,b,

and define
Ξk(σ) = ∑

a∈Γ
(Ck,a ⊗Uk,a) ρ (Ck,a ⊗Uk,a)

∗ .

It may be checked that each Uk,a is unitary and that ∑a∈Γ C∗k,aCk,a = 1ZA . Thus, Ξk is an A→B
channel, and once again it may be verified that (16.5) holds for every ρ ∈ L

(
X k

A ⊗X k
B
)
. A similar



process is used to define a B→ A channel Ξk obeying the equation (16.5) in case Φk is a message
transmission from Bob to Alice.

By making use of (16.5) iteratively, we find that

(Ξn−1 · · ·Ξ1) ((VA,1 ⊗VB,1)ρ(VA,1 ⊗VB,1)
∗) = (VA,n ⊗VB,n)(Φn−1 · · ·Φ1)(ρ)(VA,n ⊗VB,n)

∗.

Setting VA = VA,1, VB = VB,1, WA = VA,n, WB = VA,n, and recalling that YA = X n
A and YB = X n

B ,
we have that Ψ = Ξn · · ·Ξ1 is a restricted LOCC channel satisfying the requirements of the
theorem.

Next, we observe that restricted LOCC channels can be “collapsed” to a single A→B or B→A
channel, assuming their action on a single know pure state is the only concern.

Lemma 16.4. For any choice of complex Euclidean spaces ZA and ZB having equal dimension, every
restricted LOCC channel Φ ∈ C (ZA ⊗ZB), and every vector x ∈ ZA ⊗ ZB, the following statements
hold.

1. There exists an A→B channel Ψ ∈ C (ZA ⊗ZB) such that Ψ(xx∗) = Φ(xx∗).

2. There exists a B→A channel Ψ ∈ C (ZA ⊗ZB) such that Ψ(xx∗) = Φ(xx∗).

Proof. The idea of the proof is to show that A→B and B→A channels can be interchanged for
fixed pure-state inputs, which allows any restricted LOCC channel to be collapsed to a single
A→B or B→A channel by applying the interchanges recursively, and noting that A→B channels
and B→ A channels are (separately) both closed under composition.

Suppose that {Aa : a ∈ Σ} ⊂ L (ZA) is a collection of operators for which ∑a∈Σ A∗a A = 1ZA ,
{Ua : a ∈ Σ} ⊂ U (ZB) is a collection of unitary operators, and

Ξ(ρ) = ∑
a∈Σ

(Aa ⊗Ua)ρ(Aa ⊗Ua)
∗

is the A→B channel that is described by these operators. Let X ∈ L (ZB,ZA) satisfy vec(X) = x.
It holds that

Ξ(xx∗) = Ξ(vec(X) vec(X)∗) = ∑
a∈Σ

vec (AaXUT
a ) vec (AaXUT

a )
∗ .

Our goal is to find a collection of operators {Ba : a ∈ Σ} ⊂ L (ZB) satisfying ∑a∈Σ B∗a Ba = 1ZB

and a collection of unitary operators {Va : a ∈ Σ} ⊂ U (ZA) such that

VaXBT
a = AaXUT

a

for all a ∈ Σ. If such a collection of operators is found, then we will have that

∑
a∈Σ

(Va ⊗ Ba) vec(X) vec(X)∗(Va ⊗ Ba)
∗ = ∑

a∈Σ
vec(VaXBT

a ) vec(VaXBT
a )
∗

= ∑
a∈Σ

vec(AaXUT
a ) vec(AaXUT

a )
∗ = ∑

a∈Σ
(Aa ⊗Ua) vec(X) vec(X)∗(Aa ⊗Ua)

∗,

so that Ξ(uu∗) = Λ(uu∗) for Λ being the B→A channel defined by

Λ(ρ) = ∑
a∈Σ

(Va ⊗ Ba)ρ(Va ⊗ Ba)
∗.



Choose a unitary operator U ∈ U (ZA,ZB) such that XU ∈ Pos (ZA). Such a U can be found
by considering a singular value decomposition of X. Also, for each a ∈ Σ, choose a unitary
operator Wa ∈ U (ZA,ZB) such that

AaXUT
a Wa ∈ Pos (ZA) .

We have that

AaXUT
a Wa = (AaXUT

a Wa)
∗ = (Aa(XU)U∗UT

a Wa)
∗ = W∗a UaU(XU)A∗a ,

so that
AaXUT

a = W∗a UaUXUA∗aW∗a .

Define
Va = W∗a UaU and Ba = (UA∗aW∗a )

T

for each a ∈ Σ. Each Va is unitary and it can be checked that

∑
a∈Σ

B∗a Ba = 1ZB .

We have VaXBT
a = AaXUT

a as required.
We have therefore proved that for every A→B channel Ξ ∈ C (ZA ⊗ZB), there exists a B→A

channel Λ ∈ C (ZA ⊗ZB) such that Ξ(xx∗) = Λ(xx∗). A symmetric argument shows that for
every B→A channel Ξ, there exists an A→B channel Λ such that Λ(xx∗) = Ξ(xx∗).

Finally, notice that the composition of any two A→B channels is also an A→B channel, and
likewise for B→A channels. Therefore, by applying the above arguments repeatedly for the A→B
and B→A channels from which Φ is composed, we find that there exists an A→B channel Ψ such
that Ψ(uu∗) = Φ(uu∗), and likewise for Ψ being a B→A channel.

We are now prepared to finish the proof of Nielsen’s theorem. We assume that there exists
an LOCC channel Φ mapping xx∗ to yy∗. By Theorem 16.2 and Lemma 16.4, we have that there
is no loss of generality in assuming x, y ∈ ZA ⊗ZB for ZA and ZB having equal dimension, and
moreover that Φ ∈ C (ZA ⊗ZB) is a B→A channel. Write

Φ(ρ) = ∑
a∈Σ

(Va ⊗ Ba)ρ(Va ⊗ Ba)
∗,

for {Ba : a ∈ Σ} satisfying ∑a∈Σ B∗a Ba = 1ZB and {Va : a ∈ Σ} being a collection of unitary
operators on ZA.

Let X, Y ∈ L (ZB,ZA) satisfy x = vec(X) and y = vec(Y), so that

Φ(vec(X) vec(X)∗) = ∑
a∈Σ

vec(VaXBT
a ) vec(VaXBT

a )
∗ = vec(Y) vec(Y)∗.

This implies that
VaXBT

a = αaY

and therefore
XBT

a = αaV∗a Y

for each a ∈ Σ, where {αa : a ∈ Σ} is a collection of complex numbers. We now have

∑
a∈Σ
|αa |2 V∗a YY∗Va = ∑

a∈Σ
XBT

a BaX∗ = XX∗.



Taking the trace of both sides of this equation reveals that ∑a∈Σ |αa |2 = 1. It has therefore been
shown that there exists a mixed unitary channel mapping YY∗ to XX∗. It therefore holds that
XX∗ ≺ YY∗ (or, equivalently, TrZB(xx∗) ≺ TrZB(yy∗)) as required.
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