CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 15: Separable mappings and the LOCC paradigm

In the previous lecture we discussed separable operators. The focus of this lecture will be on
analogous concepts for mappings between operator spaces. In particular, we will discuss separable
channels, as well as the important subclass of LOCC channels. The acronym LOCC is short for local
operations and classical communication, and plays a central role in the study of entanglement.

15.1 Min-rank

Before discussing separable and LOCC channels, it will be helpful to briefly discuss a general-
ization of the concept of separability for operators.

Suppose two complex Euclidean spaces X and ) are fixed, and for a given choice of a non-
negative integer k let us consider the collection of operators

Ri (X 1Y) = conv {vec(A)vec(A)* : A€ L(Y,X), rank(A) < k}.

In other words, a given positive semidefinite operator P € Pos (X ® ) is contained in R (X : V)
if and only if it is possible to write

m
P =) vec(A;j)vec(A;j)*
=1

for some choice of an integer m and operators A, ..., A, € L (Y, X'), each having rank at most k.
This sort of expression does not require orthogonality of the operators Ay, ..., A;, and it is not
necessarily the case that a spectral decomposition of P will yield a collection of operators for
which the rank is minimized.

Each of the sets Ry (X : )) is a closed convex cone. It is easy to see that

Rp(X:Y)={0}, Ri(X:)Y)=Sep(X:Y), and R,(X:))=Pos(XRY)
for n > min{dim(X’), dim()) }. Moreover,
Re (X :Y) SR (X :))

for 0 < k < min{dim(X’),dim())}, as vec(A) vec(A)* is contained in the set R, (X : ))) but not
the set R,_1 (X : V) for r = rank(A).
Finally, for each positive semidefinite operator P € Pos (X ® )), we define the min-rank of P
as
min-rank(P) =min{k >0 : Pe Ry (X : ))}.

This quantity is more commonly known as the Schmidt number, named after Erhard Schmidt.
There is no evidence that he ever considered this concept or anything analogous—his name has
presumably been associated with it because of its connection to the Schmidt decomposition.



15.2 Separable mappings between operator spaces

A completely positive mapping ® € T (X4 ® X, V4 @ Vp), is said to be separable if and only if
there exists operators A1, ..., Ay € L(X4,Y4) and By, ..., B, € L (A&B, Vp) such that

CD(X) = Z(A]' &® Bj)X(A]‘ & B]')* (15.1)
j=1

for all X € L (X4 ® Ap). This condition is equivalent to saying that & is a nonnegative linear
combination of tensor products of completely positive mappings. We denote the set of all such
separable mappings as

SepT (XA, yA : XB,yB) .

When we refer to a separable channel, we (of course) mean a channel that is a separable mapping,
and we write

SepC (Xa,Va : Xp, Vp) = SepT (X4, Va : X, V) NC (X4 @ X, Va4 ® Vp)

to denote the set of separable channels (for a particular choice of X4, X, V4, and Vp).
The use of the term separable to describe mappings of the above form is consistent with the
following observation.

Proposition 15.1. Let ® € T (X4 ® X, YVa ® Vg) be a mapping. It holds that
(ONS SepT (XA,JJA : XB,yB)

if and only if
J(®) € Sep (Va ® Xa: Vp® Xp).

Remark 15.2. The statement of this proposition is deserving of a short discussion. If it is the case
that
D eT(Xa®XB,Va®Vp),

then it holds that
J(@) e L(Va®Vp® Xy ® Xp).

The set Sep (Va4 ® X4 : Vg ® X), on the other hand, is a subset of L (V4 ® X4 ® Vg ® X3), not
L (Y4 ® Vg ® X4 ® Xp); the tensor factors are not appearing in the proper order to make sense
of the proposition. To state the proposition more formally, we should take into account that a
permutation of tensor factors is needed.
To do this, let us define an operator W € L (V4 ® Vp ® X4 @ Xp, Y4 ® X4 ® Vp @ Xp) by the
action
W(ya ®yp® x4 ®@xp) = Yya ® x4 ®YB D Xp

on vectors x4 € X4, xp € X, ya € Va, and yp € Vp. The mapping W is like a unitary operator,
in the sense that it is a norm preserving and invertible linear mapping. (It is not exactly a unitary
operator as we defined them in Lecture 1 because it does not map a space to itself, but this is
really just a minor point about a choice of terminology.) Rather than writing

J(®@) € Sep (Va ® Xa : Vg ® Xp)



in the proposition, we should write
WJ(®)W* € Sep (Va ® Xa: Vp® Ap).

Omitting permutations of tensor factors like this is common in quantum information theory.
When every space being discussed has its own name, there is often no ambiguity in omitting
references to permutation operators such as W because it is implicit that they should be there,
and it can become something of a distraction to refer to them explicitly.

Proof. Given an expression for ®, we have
m
J(@) =) vec(A)) vec(Aj)* @ vec(B;) vec(B;)* € Sep (V4 ® X4 : Vg ® Xp).
j=1
On the other hand, if J(®) € Sep (Va4 ® X4 : Vg ® Ap) we may write
m
J(@) =) vec(A)) vec(Aj)* @ vec(B)) vec(B))*
j=1

for some choice of operators Ay, ..., Ay € L(X4,Y4) and By, ..., B, € L (&g, V). This implies
® may be expressed in the form (15.1). O

Let us now observe the simple and yet useful fact that separable mappings cannot increase
min-rank. This implies, in particular, that separable mappings cannot create entanglement out of
thin air: if a separable operator is input to a separable mapping, the output will also be separable.

Theorem 15.3. Let ® € SepT (X4, Va4 : X, V) be a separable mapping and let P € Ry (X4 = Xp). It
holds that

CD(P) c Rk (yA . yB) .
In other words, min-rank(®(Q)) < min-rank(Q) for every Q € Pos (X4 ® X3p).

Proof. Assume Aj,..., Ay € L(X4,Y4) and By, ..., By, € L(X3p, Vp) satisfy

CD(X) = i(/‘j X Bj)X(A]‘ & Bj)*
=

for all X € L (X4 ® Aj). For any choice of Y € L (X, X4) we have
m *
@(vec(Y) vec(Y)*) =) vec <A]-YB]T> vec (A]-YB]-T> :
j=1

As
rank <A]-YB]T> < rank(Y)
foreachj=1,...,m, it holds that
D(vec(Y)vec(Y)") € Ry (Va: VB)

for r = rank(Y). The theorem follows by convexity. O



Finally, let us note that the separable mappings are closed under composition, as the following
proposition claims.

Proposition 15.4. Suppose © € SepT (X4, V4 : X, Vp) and ¥ € SepT (Va, Z4 : Vs, Zp). It holds
that Y& € SepT (XA, Za: Xp, ZB)
Proof. Suppose

@(X) = i(A]’ X B]‘)X(A]‘ &® Bj)*
=

and
n

YY) = Z(Ck ® Dy)Y(Cx ® Dy)*.
k=1
It follows that

(Y@)(X) =} ) [(Cedj) ® (DiB))] X [(Cedj) ® (DiBy)]
k=1j=1
which has the required form for separability. O

15.3 LOCC channels

We will now discuss LOCC channels, or channels implementable by local operations and classical
communication. Here we are considering the situation in which two parties, Alice and Bob, collec-
tively perform some sequence of operations and/or measurements on a shared quantum system,
with the restriction that quantum operations must be performed locally, and all communication
between them must be classical. LOCC channels will be defined, in mathematical terms, as those
that can obtained as follows.

1. Alice and Bob can independently apply channels to their own registers, independently of the
other player.

2. Alice can transmit information to Bob through a classical channel, and likewise Bob can
transmit information to Alice through a classical channel.

3. Alice and Bob can compose any finite number of operations that correspond to items 1 and 2.

Many problems and results in quantum information theory concern LOCC channels in one
form or another, often involving Alice and Bob’s ability to manipulate entangled states by means
of such operations.

15.3.1 Definition of LOCC channels

Let us begin with a straightforward formal definition of LOCC channels. There are many other
equivalent ways that one could define this class; we are simply picking one way.

Product channels
Let X4, X, V4, VB be complex Euclidean spaces and suppose that &4 € C (X4, Y4) and Pp €
C (XB, Vp) are channels. The mapping

Py Pp € C (X4 ® A, Va® V)

is then said to be a product channel. Such a channel represents the situation in which Alice and
Bob perform independent operations on their own quantum systems.



Classical communication channels

Let X4, X, and Z be complex Euclidean spaces, and assume Z = C~* for & being a finite and
nonempty set. Let A € C(Z) denote the completely dephasing channel

A(Z) =Y Z(a,a)Eq,.

acy.

This channel may be viewed as a perfect classical communication channel that transmits symbols
in the set ¥ without error. It may equivalently be seen as a quantum channel that measures
everything sent into it with respect to the standard basis of Z, transmitting the result to the
receiver.
Now, the channel
ONS C((XA ®Z) QR Xp, X4 ® (Z@XB))

defined by
Q((X4®Z) @ Xp) = Xa® (A(Z) ® Xp)

represents a classical communication channel from Alice to Bob, while the similarly defined
channel
P e C(XA® (Z@XB),(XA®Z)®XB)

given by
P(Xa®(Z®Xp)) = (Xa®A(Z)) @ Xp

represents a classical communication channel from Bob to Alice. In both of these cases, the spaces
X4 and Ap represent quantum systems held by Alice and Bob, respectively, that are unaffected
by the transmission. Of course the only difference between the two channels is the interpretation
of who sends and who receives the register Z corresponding to the space Z, which is represented
by the parentheses in the above expressions.

When we speak of a classical communication channel, we mean either an Alice-to-Bob or Bob-
to-Alice classical communication channel.

Finite compositions

Finally, for complex Euclidean spaces X4, Xp, Y4 and Vg, an LOCC channel is any channel of the
form
P ecC(Xy®XE,Va®VB)

that can be obtained from the composition of any finite number of product channels and classical
communication channels. (The input and output spaces of each channel in the composition is
arbitrary, so long as the first channel inputs X4 ® Xp and the last channel outputs Y4 ® Vg. The
intermediate channels can act on arbitrary complex Euclidean spaces so long as they are product
channels or classical communication channels and the composition makes sense.) We will write

LOCC (X4, Y4 : X5, V)

to denote the collection of all LOCC channels as just defined.

Note that by defining LOCC channels in terms of finite compositions, we are implicitly fixing
the number of messages exchanged by Alice and Bob in the realization of any specific LOCC
channel.



15.3.2 LOCC channels are separable

There are many simple questions concerning LOCC channels that are not yet answered. For
instance, it is not known whether LOCC (X4, V4 : X, V3) is a closed set for any nontrivial choice
of spaces X4, X, V4 and V. (For LOCC channels involving three or more parties—Alice, Bob,
and Charlie, say—it was only proved this past year that the corresponding set of LOCC channels
is not closed.) It is a related problem to better understand the number of message transmissions
needed to implement LOCC channels.

In some situations, we may conclude interesting facts about LOCC channels by reasoning
about separable channels. To this end, let us state a simple but very useful proposition.

Proposition 15.5. Let & € LOCC (X4, Y4 : X, Vp) be an LOCC channel. It holds that
® € SepC (X, Va : X, V).

Proof. The set of separable channels is closed under composition, and product channels are ob-
viously separable, so it remains to observe that classical communication channels are separable.
Suppose
Q((Xa®Z) @ Xp) = Xa® (A(Z) ® Xp)

is a classical communication channel from Alice to Bob. It holds that

®(p) =} [(Lx, @ €;) @ (ea ®1,)] p [(Lx, ® €7) @ (e @ L,)] ",

aex

which demonstrates that
(ONS SepC(XA(X)Z,XA@C : C@XB,ZQQXB) = SepC (XA®Z,XA : XB,Z®XB)

as required. A similar argument proves that every Bob-to-Alice classical communication channel
is a separable channel. O

In case the argument above about classical communication channels looks like abstract non-
sense, it may be helpful to observe that the key feature of the channel A that allows the argument
to work is that it can be expressed in Kraus form, where all of the Kraus operators have rank
equal to one.

It must be noted that the separable channels do not give a perfect characterization of LOCC
channels: there exist separable channels that are not LOCC channels. Nevertheless, we will
still be able to use this proposition to prove various things about LOCC channels. One simple
example follows.

Corollary 15.6. Suppose p € D (X4 ® &) and & € LOCC (X4, V4 : X, Vp). It holds that
min-rank(®(p)) < min-rank(p).

In particular, if p € SepD (X4 : Xp) then ®(p) € SepD (Va4 : VB).
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