
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 14: Separable operators

For the next several lectures we will be discussing various aspects and properties of entanglement.
Mathematically speaking, we define entanglement in terms of what it is not, rather than what it
is: we define the notion of a separable operator, and define that any density operator that is not
separable represents an entangled state.

14.1 Definition and basic properties of separable operators

Let X and Y be complex Euclidean spaces. A positive semidefinite operator P ∈ Pos (X ⊗Y) is
separable if and only if there exists a positive integer m and positive semidefinite operators

Q1, . . . , Qm ∈ Pos (X ) and R1, . . . , Rm ∈ Pos (Y)

such that

P =
m

∑
j=1

Qj ⊗ Rj. (14.1)

We will write Sep (X : Y) to denote the collection of all such operators.1 It is the case that
Sep (X : Y) is a convex cone, and it is not difficult to prove that Sep (X : Y) is properly contained
in Pos (X ⊗Y). (We will see that this is so later in the lecture.) Operators P ∈ Pos (X ⊗Y) that
are not contained in Sep (X : Y) are said to be entangled.

Let us also define
SepD (X : Y) = Sep (X : Y) ∩D (X ⊗Y)

to be the set of separable density operators acting on X ⊗Y . By thinking about spectral decom-
positions, one sees immediately that the set of separable density operators is equal to the convex
hull of the pure product density operators:

SepD (X : Y) = conv {xx∗ ⊗ yy∗ : x ∈ S (X ) , y ∈ S (Y)} .

Thus, every element ρ ∈ SepD (X : Y) may be expressed as

ρ =
m

∑
j=1

pj xjx∗j ⊗ yjy∗j (14.2)

for some choice of m ≥ 1, a probability vector p = (p1, . . . , pm), and unit vectors x1, . . . , xm ∈ X
and y1, . . . , ym ∈ Y .

A few words about the intuitive meaning of states in SepD (X : Y) follow. Suppose X and Y
are registers in a separable state ρ ∈ SepD (X : Y). It may be the case that X and Y are correlated,

1One may extend this definition to any number of spaces, defining (for instance) Sep (X1 : X2 : · · · : Xn) in the
natural way. Our focus, however, will be on bipartite entanglement rather than multipartite entanglement, and so we will
not consider this extension further.



given that ρ does not necessarily take the form of a product state ρ = σ⊗ ξ for σ ∈ D (X ) and
ξ ∈ D (Y). However, any correlations between X and Y are in some sense classical, because ρ is a
convex combination of product states. This places a strong limitation on the possible correlations
between X and Y that may exist, as compared to non-separable (or entangled) states. A simple
example is teleportation, discussed in Lecture 6: any attempt to substitute a separable state for
the types of states we used for teleportation is doomed to fail.

A simple application of Carathéodory’s Theorem establishes that for every separable state ρ ∈
SepD (X : Y), there exists an expression of the form (14.2) for some choice of m ≤ dim(X ⊗Y)2.
Notice that Sep (X : Y) is the cone generated by SepD (X : Y):

Sep (X : Y) = {λρ : λ ≥ 0, ρ ∈ SepD (X : Y)} .

The same bound m ≤ dim(X ⊗ Y)2 may therefore be taken for some expression (14.1) of any
P ∈ Sep (X : Y).

Next, let us note that SepD (X : Y) is a compact set. To see this, we first observe that the unit
spheres S (X ) and S (Y) are compact, and therefore so too is the Cartesian product S (X )× S (Y).
The function

f : X ×Y → L (X ⊗Y) : (x, y) 7→ xx∗ ⊗ yy∗

is continuous, and continuous functions map compact sets to compact sets, so the set

{xx∗ ⊗ yy∗ : x ∈ S (X ) , y ∈ S (Y)}

is compact as well. Finally, it is a basic fact from convex analysis that the convex hull of any
compact set is compact.

The set Sep (X ⊗Y) is of course not compact, given that it is not bounded. It is a closed,
convex cone, however, because it is the cone generated by a compact, convex set that does not
contain the origin.

14.2 The Woronowicz–Horodecki criterion

Next we will discuss a necessary and sufficient condition for a given positive semidefinite op-
erator to be separable. Although this condition, sometimes known as the Woronowicz–Horodecki
criterion, does not give us an efficiently computable method to determine whether or not an
operator is separable, it is useful nevertheless in an analytic sense.

The Woronowicz–Horodecki criterion is based on the fundamental fact from convex analysis
that says that closed convex sets are determined by the closed half-spaces that contain them.
Here is one version of this fact that is well-suited to our needs.

Fact. Let X be a complex Euclidean space and let A ⊂ Herm (X ) be a closed, convex cone. For
any choice of an operator B ∈ Herm (X ) with B 6∈ A, there exists an operator H ∈ Herm (X )
such that

1. 〈H, A〉 ≥ 0 for all A ∈ A, and

2. 〈H, B〉 < 0.

It should be noted that the particular statement above is only valid for closed convex cones, not
general closed convex sets. For a general closed, convex set, it may be necessary to replace 0 with
some other real scalar for each choice of B.



Theorem 14.1 (Woronowicz–Horodecki criterion). Let X and Y be complex Euclidean spaces and let
P ∈ Pos (X ⊗Y). It holds that P ∈ Sep (X : Y) if and only if

(Φ⊗ 1L(Y))(P) ∈ Pos (Y ⊗ Y)

for every positive and unital mapping Φ ∈ T (X ,Y).

Proof. One direction of the proof is simple. If P ∈ Sep (X : Y), then we have

P =
m

∑
j=1

Qj ⊗ Rj

for some choice of Q1, . . . , Qm ∈ Pos (X ) and R1, . . . , Rm ∈ Pos (Y). Thus, for every positive
mapping Φ ∈ T (X ,Y) we have

(Φ⊗ 1L(Y))(P) =
m

∑
j=1

Φ(Qj)⊗ Rj ∈ Sep (Y : Y) ⊂ Pos (Y ⊗ Y) .

A similar fact holds for any choice of a positive mapping Ψ ∈ T (X ,W), forW being any complex
Euclidean space, taken in place of Φ, by similar reasoning.

Let us now assume that P ∈ Pos (X ⊗Y) is not separable. The fact stated above, there must
exist a Hermitian operator H ∈ Herm (X ⊗Y) such that:

1. 〈H, Q⊗ R〉 ≥ 0 for all Q ∈ Pos (X ) and R ∈ Pos (Y), and

2. 〈H, P〉 < 0.

Let Ψ ∈ T (Y ,X ) be the unique mapping for which J(Ψ) = H. For any Q ∈ Pos (X ) and
R ∈ Pos (Y) we therefore have

0 ≤ 〈H, Q⊗ R〉 =
〈
(Ψ⊗ 1L(Y)) (vec(1Y ) vec(1Y )∗) , Q⊗ R

〉
= 〈vec(1Y ) vec(1Y )∗, Ψ∗(Q)⊗ R〉 = vec(1Y )∗ (Ψ∗(Q)⊗ R) vec(1Y )

= Tr (Ψ∗(Q)RT) =
〈

R, Ψ∗(Q)
〉

.

From this we conclude that Ψ∗ is a positive mapping.
Suppose for the moment that we do not care about the unital condition on Φ that is required

by the statement of the theorem. We could then take Φ = Ψ∗ to complete the proof, because

vec(1Y )∗
(
(Ψ∗ ⊗ 1L(Y))(P)

)
vec(1Y ) =

〈
vec(1Y ) vec(1Y )∗,

(
Ψ∗ ⊗ 1L(Y)

)
(P)
〉

=
〈
(Ψ⊗ 1L(Y)) (vec(1Y ) vec(1Y )∗) , P

〉
= 〈H, P〉 < 0,

establishing that (Ψ∗ ⊗ 1L(Y))(P) is not positive semidefinite.
To obtain a mapping Φ that is unital, and satisfies the condition that (Φ⊗ 1L(Y))(P) is not

positive semidefinite, we will simply tweak Ψ∗ a bit. First, given that 〈H, P〉 < 0, we may choose
ε > 0 sufficiently small so that

〈H, P〉+ ε Tr(P) < 0.

Now define Ξ ∈ T (X ,Y) as
Ξ(X) = Ψ∗(X) + ε Tr(X)1Y



for all X ∈ L (X ), and let A = Ξ(1X ). Given that Ψ∗ is positive and ε is greater than zero, it
follows that A ∈ Pd (Y), and so we may define Φ ∈ T (X ,Y) as

Φ(X) = A−1/2Ξ(X)A−1/2

for every X ∈ L (X ).
It is clear that Φ is both positive and unital, and it remains to prove that (Φ⊗ 1L(Y))(P) is not

positive semidefinite. This may be verified as follows:〈
vec

(√
A
)

vec
(√

A
)∗

, (Φ⊗ 1L(Y))(P)
〉

=
〈

vec(1Y ) vec(1Y )∗, (Ξ⊗ 1L(Y))(P)
〉

=
〈
(Ξ∗ ⊗ 1L(Y)) (vec(1Y ) vec(1Y )∗) , P

〉
= 〈J (Ξ∗) , P〉
= 〈J(Ψ) + ε1Y⊗X , P〉
= 〈H, P〉+ ε Tr(P)
< 0.

It follows that (Φ⊗ 1L(Y))(P) is not positive semidefinite, and so the proof is complete.

This theorem allows us to easily prove that certain positive semidefinite operators are not
separable. For example, consider the operator

P =
1
n

vec(1X ) vec(1X )∗

for X = CΣ, |Σ| = n. We consider the transposition mapping T ∈ T (X ), which is positive and
unital. We have

(T ⊗ 1L(X ))(P) =
1
n ∑

a,b∈Σ
Eb,a ⊗ Ea,b =

1
n

W,

for W ∈ L (X ⊗X ) being the swap operator: W(u⊗ v) = v⊗ u for all u, v ∈ X . This operator is
not positive semidefinite (provided n ≥ 2), which is easily verified by noting that W has negative
eigenvalues. For instance,

W(ea ⊗ eb − eb ⊗ ea) = −(ea ⊗ eb − eb ⊗ ea)

for a 6= b. We therefore have that P is not separable by Theorem 14.1.

14.3 Separable ball around the identity

Finally, we will prove that there exists a small region around the identity operator 1X ⊗ 1Y where
every Hermitian operator is separable. This fact gives us an intuitive connection between noise
and entanglement, which is that entanglement cannot exist in the presence of too much noise.

We will need two facts, beyond those we have already proved, to establish this result. The
first is straightforward, and is as follows.



Lemma 14.2. Let X and Y = CΣ be complex Euclidean spaces, and consider an operator A ∈ L (X ⊗Y)
given by

A = ∑
a,b∈Σ

Aa,b ⊗ Ea,b

for {Aa,b : a, b ∈ Σ} ⊂ L (X ). It holds that

‖A‖2 ≤ ∑
a,b∈Σ
‖Aa,b‖2 .

Proof. For each a ∈ Σ define
Ba = ∑

b∈Σ
Aa,b ⊗ Ea,b.

We have that

‖BaB∗a ‖ =
∥∥∥∥∥∑

b∈Σ
Aa,b A∗a,b ⊗ Ea,a

∥∥∥∥∥ ≤ ∑
b∈Σ

∥∥Aa,b A∗a,b
∥∥ = ∑

b∈Σ
‖Aa,b‖2 .

Now,
A = ∑

a∈Σ
Ba,

and given that B∗a Bb = 0 for a 6= b, we have that

A∗A = ∑
a∈Σ

B∗a Ba.

Therefore
‖A‖2 = ‖A∗A‖ ≤ ∑

a∈Σ
‖B∗a Ba‖ ≤ ∑

a,b∈Σ
‖Aa,b‖2

as claimed.

The second fact that we need is a theorem about positive unital mappings, which says that
they cannot increase the spectral norm of operators.

Theorem 14.3 (Russo–Dye). Let X and Y be complex Euclidean spaces and let Φ ∈ T (X ,Y) be positive
and unital. It holds that

‖Φ(X)‖ ≤ ‖X‖
for every X ∈ L (X ).

Proof. Let us first prove that ‖Φ(U)‖ ≤ 1 for every unitary operator U ∈ U (X ). Assume
X = CΣ, and let

U = ∑
a∈Σ

λa uau∗a

be a spectral decomposition of U. It holds that

Φ(U) = ∑
a∈Σ

λaΦ (uau∗a) = ∑
a∈Σ

λaPa,

where Pa = Φ (uau∗a) for each a ∈ Σ. As Φ is positive, we have that Pa ∈ Pos (Y) for each a ∈ Σ,
and given that Φ is unital we have

∑
a∈Σ

Pa = 1Y .



By Naimark’s Theorem there exists a linear isometry A ∈ U (Y ,Y ⊗X ) such that

Pa = A∗(1Y ⊗ Ea,a)A

for each a ∈ Σ, and therefore

Φ(U) = A∗
(

∑
a∈Σ

λa 1Y ⊗ Ea,a

)
A = A∗(1Y ⊗VUV∗)A

for
V = ∑

a∈Σ
eau∗a .

As U and V are unitary and A is an isometry, the bound ‖Φ(U)‖ ≤ 1 follows from the submul-
tiplicativity of the spectral norm.

For general X, it suffices to prove ‖Φ(X)‖ ≤ 1 whenever ‖X‖ ≤ 1. Because every operator
X ∈ L (X ) with ‖X‖ ≤ 1 can be expressed as a convex combination of unitary operators, the
required bound follows from the convexity of the spectral norm.

Theorem 14.4. Let X and Y be complex Euclidean spaces and suppose that A ∈ Herm (X ⊗Y) satisfies
‖A‖2 ≤ 1. It holds that

1X⊗Y − A ∈ Sep (X : Y) .

Proof. Let Φ ∈ T (X ,Y) be positive and unital. Assume Y = CΣ and write

A = ∑
a,b∈Σ

Aa,b ⊗ Ea,b.

We have
(Φ⊗ 1L(Y))(A) = ∑

a,b∈Σ
Φ(Aa,b)⊗ Ea,b,

and therefore∥∥∥(Φ⊗ 1L(Y))(A)
∥∥∥2
≤ ∑

a,b∈Σ
‖Φ(Aa,b)‖2 ≤ ∑

a,b∈Σ
‖Aa,b‖2 ≤ ∑

a,b∈Σ
‖Aa,b‖2

2 = ‖A‖2
2 ≤ 1.

The first inequality is by Lemma 14.2 and the second inequality is by Theorem 14.3. The positivity
of Φ implies that (Φ⊗ 1L(Y))(A) is Hermitian, and thus (Φ⊗ 1L(Y))(A) ≤ 1Y⊗Y . Therefore we
have

(Φ⊗ 1L(Y))(1X⊗Y − A) = 1Y⊗Y − (Φ⊗ 1L(Y))(A) ≥ 0.

As this holds for all positive and unital mappings Φ, we have that 1X⊗Y − A is separable by
Theorem 14.1.
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