
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 11: Strong subadditivity of von Neumann entropy

In this lecture we will prove a fundamental fact about the von Neumann entropy, known as strong
subadditivity. Let us begin with a precise statement of this fact.

Theorem 11.1 (Strong subadditivity of von Neumann entropy). Let X, Y, and Z be registers. For
every state ρ ∈ D (X ⊗Y ⊗Z) of these registers it holds that

S(X,Y,Z) + S(Z) ≤ S(X,Z) + S(Y,Z).

There are multiple known ways to prove this theorem. The approach we will take is to first
establish a property of the quantum relative entropy, known as joint convexity. Once we establish
this property, it will be straightforward to prove strong subadditivity.

11.1 Joint convexity of the quantum relative entropy

We will now prove that the quantum relative entropy is jointly convex, as is stated by the follow-
ing theorem.

Theorem 11.2 (Joint convexity of the quantum relative entropy). Let X be a complex Euclidean
space, let ρ0, ρ1, σ0, σ1 ∈ D (X ) be positive definite density operators, and let λ ∈ [0, 1]. It holds that

S(λρ0 + (1− λ)ρ1‖λσ0 + (1− λ)σ1) ≤ λ S(ρ0‖σ0) + (1− λ) S(ρ1‖σ1).

The proof of Theorem 11.2 that we will study is fairly standard and has the nice property of
being elementary. It is, however, relatively complicated, so we will need to break it up into a few
pieces.

Before considering the proof, let us note that the theorem remains true if we allow ρ0, ρ1,
σ0, and σ1 to be arbitrary density operators, provided we allow the quantum relative entropy
to take infinite values as we discussed in the previous lecture. Supposing that we do this, we
see that if either S(ρ0‖σ0) or S(ρ1‖σ1) is infinite, there is nothing to prove. If it is the case
that S(λρ0 + (1− λ)ρ1‖λσ0 + (1− λ)σ1) is infinite, then either S(ρ0‖σ0) or S(ρ1‖σ1) is infinite as
well: if λ ∈ (0, 1), then ker(λρ0 + (1− λ)ρ1) = ker(ρ0) ∩ ker(ρ1) and ker(λσ0 + (1− λ)σ1) =
ker(σ0) ∩ ker(σ1), owing to the fact that ρ0, ρ1, σ0, and σ1 are all positive semidefinite; and so

ker(λσ0 + (1− λ)σ1) 6⊆ ker(λρ0 + (1− λ)ρ1)

implies ker(σ0) 6⊆ ker(ρ0) or ker(σ1) 6⊆ ker(ρ1) (or both). In the remaining case, which is that
S(λρ0 + (1− λ)ρ1‖λσ0 + (1− λ)σ1), S(ρ0‖σ0), and S(ρ1‖σ1) are all finite, a fairly straightforward
continuity argument will establish the inequality from the one stated in the theorem.

Now, to prove the theorem, the first step is to consider a real-valued function fρ,σ : R → R

defined as
fρ,σ(α) = Tr

(
σαρ1−α

)



for all α ∈ R, for any fixed choice of positive definite density operators ρ, σ ∈ D (X ). Under the
assumption that ρ and σ are both positive definite, we have that the function fρ,σ is well defined,
and is in fact differentiable (and therefore continuous) everywhere on its domain. In particular,
we have

f ′ρ,σ(α) = Tr
[
σαρ1−α (ln(σ)− ln(ρ))

]
. (11.1)

To verify that this expression is correct, we may consider spectral decompositions

ρ =
n

∑
i=1

pixix∗i and σ =
n

∑
i=1

qiyiy∗i .

We have
Tr
(

σαρ1−α
)
= ∑

1≤i,j≤n
qα

j p1−α
i

∣∣〈xi, yj
〉∣∣2

and so

f ′ρ,σ(α) = ∑
1≤i,j≤n

(ln(qj)− ln(pi))qα
j p1−α

i

∣∣〈xi, yj
〉∣∣2 = Tr

[
σαρ1−α (ln(σ)− ln(ρ))

]
as claimed.

The main reason we are interested in the function fρ,σ is that its derivative has an interesting
value at 0:

f ′ρ,σ(0) = − ln(2)S(ρ‖σ).
We may therefore write

S(ρ‖σ) = − 1
ln(2)

f ′ρ,σ(0) = −
1

ln(2)
lim

α→0+

Tr
(
σαρ1−α

)
− 1

α
,

where the second equality follows by substituting fρ,σ(0) = 1 into the definition of the derivative.
Now consider the following theorem that concerns the relationship among the functions fρ,σ

for various choices of ρ and σ.

Theorem 11.3. Let σ0, σ1, ρ0, ρ1 ∈ Pd (X ) be positive definite operators. For every choice of α, λ ∈ [0, 1]
we have

Tr
(
(λσ0 + (1− λ)σ1)

α(λρ0 + (1− λ)ρ1)
1−α
)
≥ λ Tr

(
σα

0 ρ1−α
0

)
+ (1− λ)Tr

(
σα

1 ρ1−α
1

)
.

(The theorem happens to be true for all positive definite operators ρ0, ρ1, σ0, and σ1, but we will
really only need it for density operators.)

Before proving this theorem, let us note that it implies Theorem 11.2.

Proof of Theorem 11.2 (assuming Theorem 11.3). We have

S(λρ0 + (1− λ)ρ1‖λσ0 + (1− λ)σ1)

= − 1
ln(2)

lim
α→0+

Tr
(
(λσ0 + (1− λ)σ1)

α(λρ0 + (1− λ)ρ1)
1−α
)
− 1

α

≤ − 1
ln(2)

lim
α→0+

λ Tr
(

σα
0 ρ1−α

0

)
+ (1− λ)Tr

(
σα

1 ρ1−α
1

)
− 1

α

= − 1
ln(2)

lim
α→0+

λ

Tr
(

σα
0 ρ1−α

0

)
− 1

α

+ (1− λ)

Tr
(

σα
1 ρ1−α

1

)
− 1

α


= λ S(ρ0‖σ0) + (1− λ) S(ρ1‖σ1)



as required.

Our goal has therefore shifted to proving Theorem 11.3. To prove Theorem 11.3 we require
another fact that is stated in the theorem that follows. It is equivalent to a theorem known as
Lieb’s concavity theorem, and Theorem 11.3 is a special case of that theorem, but Lieb’s concavity
theorem itself is usually stated in a somewhat different form than the one that follows.

Theorem 11.4. Let A0, A1 ∈ Pd (X ) and B0, B1 ∈ Pd (Y) be positive definite operators. For every
choice of α ∈ [0, 1] we have

(A0 + A1)
α ⊗ (B0 + B1)

1−α ≥ Aα
0 ⊗ B1−α

0 + Aα
1 ⊗ B1−α

1 .

Once again, before proving this theorem, let us note that it implies the main result we are
working toward.

Proof of Theorem 11.3 (assuming Theorem 11.4). The substitutions

A0 = λσ0, B0 = λρT
0 , A1 = (1− λ)σ1, B1 = (1− λ)ρT

1 ,

taken in Theorem 11.4 imply the operator inequality

(λσ0 + (1− λ)σ1)
α ⊗ (λρT

0 + (1− λ)ρT
1)

1−α

≥ λ σα ⊗ (ρT
0)

1−α + (1− λ) σα
1 ⊗ (ρT

1)
1−α

= λ σα ⊗ (ρ1−α
0 )T + (1− λ) σα

1 ⊗ (ρ1−α
1 )T.

Applying the identity vec(1)∗(X⊗YT) vec(1) = Tr(XY) to both sides of the inequality then gives
the desired result.

Now, toward the proof of Theorem 11.4, we require the following lemma.

Lemma 11.5. Let P0, P1, Q0, Q1, R0, R1 ∈ Pd (X ) be positive definite operators that satisfy these condi-
tions:

1. [P0, P1] = [Q0, Q1] = [R0, R1] = 0,

2. P2
0 ≥ Q2

0 + R2
0, and

3. P2
1 ≥ Q2

1 + R2
1.

It holds that P0P1 ≥ Q0Q1 + R0R1.

Remark. Notice that in the conclusion of the lemma, P0P1 is positive definite given the assump-
tion that [P0, P1] = 0, and likewise for Q0Q1 and R0R1.

Proof. The conclusion of the lemma is equivalent to X ≤ 1 for

X = P−1/2
0 P−1/2

1 (Q0Q1 + R0R1)P−1/2
1 P−1/2

0 .

As X is positive definite, and therefore Hermitian, this in turn is equivalent to the condition that
every eigenvalue of X is at most 1.



To establish that every eigenvalue of X is at most 1, let us suppose that u is any eigenvector
of X whose corresponding eigenvalue is λ. As P0 and P1 are invertible and u is nonzero, we have
that P−1/2

0 P1/2
1 u is nonzero as well, and therefore we may define a unit vector v as follows:

v =
P−1/2

0 P1/2
1 u∥∥∥P−1/2

0 P1/2
1 u

∥∥∥ .

It holds that v is an eigenvector of P−1
0 (Q0Q1 + R0R1)P−1

1 with eigenvalue λ, and because v is a
unit vector it follows that

v∗P−1
0 (Q0Q1 + R0R1)P−1

1 v = λ.

Finally, using the fact that v is a unit vector, we can establish the required bound on λ as
follows:

λ = v∗P−1
0 (Q0Q1 + R0R1)P−1

1 v

≤
∣∣∣v∗P−1

0 Q0Q1P−1
1 v

∣∣∣+ ∣∣∣v∗P−1
0 R0R1P−1

1 v
∣∣∣

≤
√

v∗P−1
0 Q2

0P−1
0 v

√
v∗P−1

1 Q2
1P−1

1 v +
√

v∗P−1
0 R2

0P−1
0 v

√
v∗P−1

1 R2
1P−1

1 v

≤
√

v∗P−1
0 (Q2

0 + R2
0)P−1

0 v
√

v∗P−1
1 (Q2

1 + R2
1)P−1

1 v

≤ 1.

Here we have used the triangle inequality once and the Cauchy-Schwarz inequality twice, along
with the given assumptions on the operators.

Finally, we can finish of the proof of Theorem 11.2 by proving Theorem 11.4.

Proof of Theorem 11.4. Let us define a function f : [0, 1]→ Herm (X ⊗Y) as

f (α) = (A0 + A1)
α ⊗ (B0 + B1)

1−α −
(

Aα
0 ⊗ B1−α

0 + Aα
1 ⊗ B1−α

1

)
,

and let K = {α ∈ [0, 1] : f (α) ∈ Pos (X ⊗Y)} be the pre-image under f of the set Pos (X ⊗Y).
Notice that K is a closed set, given that f is continuous and Pos (X ⊗Y) is closed. Our goal is to
prove that K = [0, 1].

It is obvious that 0 and 1 are elements of K. For an arbitrary choice of α, β ∈ K, consider the
following operators:

P0 = (A0 + A1)
α/2 ⊗ (B0 + B1)

(1−α)/2,

P1 = (A0 + A1)
β/2 ⊗ (B0 + B1)

(1−β)/2,

Q0 = Aα/2
0 ⊗ B(1−α)/2

0 ,

Q1 = Aβ/2
0 ⊗ B(1−β)/2

0 ,

R0 = Aα/2
1 ⊗ B(1−α)/2

1 ,

R1 = Aβ/2
1 ⊗ B(1−β)/2

1 .



The conditions [P0, P1] = [Q0, Q1] = [R0, R1] = 0 are immediate, while the assumptions that
α ∈ K and β ∈ K correspond to the conditions P2

0 ≥ Q2
0 + R2

0 and P2
1 ≥ Q2

1 + R2
1, respectively. We

may therefore apply Lemma 11.5 to obtain

(A0 + A1)
γ ⊗ (B0 + B1)

1−γ ≥ Aγ
0 ⊗ B1−γ

0 + Aγ
1 ⊗ B1−γ

1

for γ = (α + β)/2, which implies that (α + β)/2 ∈ K.
Now, given that 0 ∈ K, 1 ∈ K, and (α + β)/2 ∈ K for any choice of α, β ∈ K, we have that K is

dense in [0, 1]. In particular, K contains every number of the form m/2n for n and m nonnegative
integers with m ≤ 2n. As K is closed, this implies that K = [0, 1] as required.

11.2 Strong subadditivity

We have worked hard to prove that the quantum relative entropy is jointly convex, and now it
is time to reap the rewards. Let us begin by proving the following simple theorem, which states
that mixed unitary channels cannot increase the relative entropy of two density operators.

Theorem 11.6. Let X be a complex Euclidean space and let Φ ∈ C (X ) be a mixed unitary channel. For
any choice of positive definite density operators ρ, σ ∈ D (X ) we have

S(Φ(ρ)‖Φ(σ)) ≤ S(ρ‖σ).

Proof. As Φ is mixed unitary, we may write

Φ(X) =
m

∑
j=1

pjUjXU∗j

for a probability vector (p1, . . . , pm) and unitary operators U1, . . . , Um ∈ U (X ). By Theorem 11.2
we have

S(Φ(ρ)‖Φ(σ)) = S

(
m

∑
j=1

pjUjρU∗j

∥∥∥∥∥ m

∑
j=1

pjUjσU∗j

)
≤

m

∑
j=1

pjS
(

UjρU∗j
∥∥∥UjσU∗j

)
.

The quantum relative entropy is clearly unitarily invariant, meaning

S(ρ‖σ) = S(UρU∗‖UσU∗)

for all U ∈ U (X ). This implies that

m

∑
j=1

pjS
(

UjρU∗j
∥∥∥UjσU∗j

)
= S(ρ‖σ),

and therefore completes the proof.

Notice that for any choice of positive definite density operators ρ0, ρ1, σ0, σ1 ∈ D (X ) we have

S(ρ0 ⊗ ρ1‖σ0 ⊗ σ1) = S(ρ0‖σ0) + S(ρ1‖σ1).

This fact follows easily from the identity log(P⊗Q) = log(P)⊗ 1+ 1⊗ log(Q), which is valid for
all P, Q ∈ Pd (X ). Combining this observation with the previous theorem yields the following
corollary.



Corollary 11.7. Let X and Y be complex Euclidean spaces. For any choice of positive definite density
operators ρ, σ ∈ D (X ⊗Y) it holds that

S(TrY (ρ)‖TrY (σ)) ≤ S(ρ‖σ).

Proof. The completely depolarizing operation Ω ∈ C (Y) is mixed unitary, as we proved in Lec-
ture 6, which implies that 1L(X ) ⊗ Ω is mixed unitary as well. For every ξ ∈ D (X ⊗Y) we
have

(1L(X ) ⊗Ω)(ξ) = TrY (ξ)⊗
1Y
m

where m = dim(Y), and therefore

S (TrY (ρ)‖TrY (σ)) = S
(

TrY (ρ)⊗
1Y
m

∥∥∥∥ TrY (σ)⊗
1Y
m

)
= S

(
(1L(X ) ⊗Ω)(ρ) ‖ (1L(X ) ⊗Ω)(σ)

)
≤ S(ρ‖σ)

as required.

Note that the above theorem and corollary extend to arbitrary density operators given that
the same is true of Theorem 11.2. Making use of the Stinespring representation of quantum
channels, we obtain the following fact.

Corollary 11.8. Let X and Y be complex Euclidean spaces, let ρ, σ ∈ D (X ) be density operators, and let
Φ ∈ C (X ,Y) be a channel. It holds that

S(Φ(ρ)‖Φ(σ)) ≤ S(ρ‖σ).

Finally we are prepared to prove strong subadditivity, which turns out to be very easy now
that we have established Corollary 11.7.

Proof of Theorem 11.1. We need to prove that the inequality

S(ρXYZ) + S(ρZ) ≤ S(ρXZ) + S(ρYZ)

holds for all choices of ρ ∈ D (X ⊗Y ⊗Z). It suffices to prove this inequality for all positive def-
inite ρ, as it then follows for arbitrary density operators ρ by the continuity of the von Neumann
entropy.

Let n = dim(X ), and observe that the following two identities hold: the first is

S
(

ρXYZ
∥∥∥∥ 1X

n
⊗ ρYZ

)
= −S(ρXYZ) + S(ρYZ) + log(n),

and the second is

S
(

ρXZ
∥∥∥∥ 1X

n
⊗ ρZ

)
= −S(ρXZ) + S(ρZ) + log(n).

By Corollary 11.7 we have

S
(

ρXZ
∥∥∥∥ 1X

n
⊗ ρZ

)
≤ S

(
ρXYZ

∥∥∥∥ 1X
n
⊗ ρYZ

)
,

and therefore
S(ρXYZ) + S(ρZ) ≤ S(ρXZ) + S(ρYZ)

as required.



To conclude the lecture, let us prove a statement about quantum mutual information that is
equivalent to strong subadditivity.

Corollary 11.9. Let X, Y, and Z be registers. For every state ρ ∈ D (X ⊗Y ⊗Z) of these registers we
have

S(X : Y) ≤ S(X : Y,Z).

Proof. By strong subadditivity we have

S(X,Y,Z) + S(Y) ≤ S(X,Y) + S(Y,Z),

which is equivalent to
S(Y)− S(X,Y) ≤ S(Y,Z)− S(X,Y,Z).

Adding S(X) to both sides gives

S(X) + S(Y)− S(X,Y) ≤ S(X) + S(Y,Z)− S(X,Y,Z).

This inequality is equivalent to
S(X : Y) ≤ S(X : Y,Z),

which establishes the claim.
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