
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 10: Continuity of von Neumann entropy;
quantum relative entropy

In the previous lecture we defined the Shannon and von Neumann entropy functions, and es-
tablished the fundamental connection between these functions and the notion of compression.
In this lecture and the next we will look more closely at the von Neumann entropy in order to
establish some basic properties of this function, as well as an important related function called
the quantum relative entropy.

10.1 Continuity of von Neumann entropy

The first property we will establish about the von Neumann entropy is that it is continuous
everywhere on its domain.

First, let us define a real valued function η : [0, ∞)→ R as follows:

η(λ) =

{
−λ ln(λ) λ > 0
0 λ = 0.

This function is continuous everywhere on its domain, and derivatives of all orders exist for all
positive real numbers. In particular we have η′(λ) = −(1 + ln(λ)) and η′′(λ) = −1/λ. A plot of
the function η is shown in Figure 10.1, and its first derivative η′ is plotted in Figure 10.2.
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Figure 10.1: A plot of the function η(λ) = −λ ln(λ).

The fact that η is continuous on [0, ∞) implies that for every finite, nonempty set Σ the
Shannon entropy is continuous at every point on [0, ∞)Σ, as

H(p) =
1

ln(2) ∑
a∈Σ

η(p(a)).
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Figure 10.2: A plot of the function η′(λ) = −(1 + ln(λ)).

We are usually only interested in H(p) for probability vectors p, but of course the function is
defined on vectors having nonnegative real entries.

Now, to prove that the von Neumann entropy is continuous, we will first prove the following
theorem, which establishes one specific sense in which the eigenvalues of a Hermitian operator
vary continuously as a function of an operator. We don’t really need the precise bound that
this theorem establishes—all we really need is that eigenvalues vary continuously as an operator
varies, which is somewhat easier to prove and does not require Hermiticity—but we’ll take the
opportunity to state the theorem because it is interesting in its own right.

Theorem 10.1. Let X be a complex Euclidean space and let A, B ∈ Herm (X ) be Hermitian operators.
It holds that

‖λ(A)− λ(B)‖1 ≤ ‖A− B‖1 .

To prove this theorem, we need another fact about eigenvalues of operators, but this one we
will take as given. (You can find proofs in several books on matrix analysis.)

Theorem 10.2 (Weyl’s monotonicity theorem). Let X be a complex Euclidean space and let A, B ∈
Herm (X ) satisfy A ≤ B. It holds that λj(A) ≤ λj(B) for 1 ≤ j ≤ dim(X ).

Proof of Theorem 10.1. Let n = dim(X ). Using the spectral decomposition of A− B, it is possible
to define two positive semidefinite operators P, Q ∈ Pos (X ) such that:

1. PQ = 0, and

2. P−Q = A− B.

(An expression of a given Hermitian operator as P−Q for such a choice of P and Q is sometimes
called a Jordan–Hahn decomposition of that operator.) Notice that ‖A− B‖1 = Tr(P) + Tr(Q).

Now, define one more Hermitian operator

X = P + B = Q + A.

We have X ≥ A, and therefore λj(X) ≥ λj(A) for 1 ≤ j ≤ n by Weyl’s monotonicity theorem.
Similarly, it holds that λj(X) ≥ λj(B) for 1 ≤ j ≤ n = dim(X ). By considering the two possible
cases λj(A) ≥ λj(B) and λj(A) ≤ λj(B), we therefore find that∣∣λj(A)− λj(B)

∣∣ ≤ 2λj(X)− (λj(A) + λj(B))



for 1 ≤ j ≤ n. Thus,

‖λ(A)− λ(B)‖1 =
n

∑
j=1

∣∣λj(A)− λj(B)
∣∣ ≥ Tr(2X− A− B) = Tr(P + Q) = ‖A− B‖1

as required.

With the above fact in hand, it is immediate from the expression S(P) = H(λ(P)) that the
von Neumann entropy is continuous (as it is a composition of two continuous functions).

Theorem 10.3. For every complex Euclidean space X , the von Neumann entropy S(P) is continuous at
every point P ∈ Pos (X ).

Let us next prove Fannes’ inequality, which may be viewed as a quantitative statement con-
cerning the continuity of the von Neumann entropy. To begin, we will use some basic calculus
to prove a fact about the function η.

Lemma 10.4. Suppose α and β are real numbers satisfying 0 ≤ α ≤ β ≤ 1 and β− α ≤ 1/2. It holds
that

|η(β)− η(α)| ≤ η(β− α).

Proof. Consider the function η′(λ) = −(1 + ln(λ)), which is plotted in Figure 10.2. Given that η′

is monotonically decreasing on its domain (0, ∞), it holds that the function

f (λ) =
∫ λ+γ

λ
η′(t)dt = η(λ + γ)− η(λ)

is monotonically non-increasing for any choice of γ ≥ 0. This means that the maximum value of
| f (λ)| over the range λ = [0, 1− γ] must occur at either λ = 0 or λ = 1− γ, and so for λ in this
range we have

|η(λ + γ)− η(λ)| ≤ max{η(γ), η(1− γ)}.

Here we have used the fact that η(1) = 0 and η(λ) ≥ 0 for λ ∈ [0, 1].
To complete the proof it suffices to prove that η(γ) ≥ η(1− γ) for γ ∈ [0, 1/2]. This claim is

certainly supported by the plot in Figure 10.1, but we can easily prove it analytically. Define a
function g(λ) = η(λ)− η(1−λ). We see that g happens to have zeroes at λ = 0 and λ = 1/2, and
were there an additional zero λ of g in the range (0, 1/2), then we would have two distinct values
δ1, δ2 ∈ (0, 1/2) for which g′(δ1) = g′(δ2) = 0 by the mean value theorem. This, however, is in
contradiction with the fact that the second derivative g′′(λ) = 1

1−λ −
1
λ of g is strictly negative

in the range (0, 1/2). As g(1/4) > 0, for instance, we have that g(λ) ≥ 0 for λ ∈ [0, 1/2] as
required.

Theorem 10.5 (Fannes Inequality). Let X be a complex Euclidean space and let n = dim(X ). For all
density operators ρ, ξ ∈ D (X ) such that ‖ρ− ξ‖1 ≤ 1/e it holds that

|S(ρ)− S(ξ)| ≤ log(n) ‖ρ− ξ‖1 +
1

ln(2)
η(‖ρ− ξ‖1).

Proof. Define
ε i = |λi(ρ)− λi(ξ)|



and let ε = ε1 + · · ·+ εn. Note that ε i ≤ ‖ρ− ξ‖1 ≤ 1/e < 1/2 for each i, and therefore

|S(ρ)− S(ξ)| = 1
ln(2)

∣∣∣∣∣ n

∑
i=1

η(λi(ρ))− η(λi(ξ))

∣∣∣∣∣ ≤ 1
ln(2)

n

∑
i=1

η(ε i)

by Lemma 10.4.
For any positive α and β we have βη(α/β) = η(α) + α ln(β), so

1
ln(2)

n

∑
i=1

η(ε i) =
1

ln(2)

n

∑
i=1

(εη(ε i/ε)− ε i ln(ε)) =
ε

ln(2)

n

∑
i=1

η(ε i/ε) +
1

ln(2)
η(ε).

Because (ε1/ε, . . . , εn/ε) is a probability vector this gives

|S(ρ)− S(ξ)| ≤ ε log(n) +
1

ln(2)
η(ε).

We have that ε ≤ ‖ρ− ξ‖1, and that η is monotone increasing on the interval [0, 1/e], so

|S(ρ)− S(ξ)| ≤ log(n) ‖ρ− ξ‖1 +
1

ln(2)
η(‖ρ− ξ‖1),

which completes the proof.

10.2 Quantum relative entropy

Next we will introduce a new function, which is indispensable as a tool for studying the von Neu-
mann entropy: the quantum relative entropy. For two positive definite operators P, Q ∈ Pd (X ) we
define the quantum relative entropy of P with Q as follows:

S(P‖Q) = Tr(P log(P))− Tr(P log(Q)). (10.1)

We usually only care about the quantum relative entropy for density operators, but there is
nothing that prevents us from allowing the definition to hold for all positive definite operators.

We may also define the quantum relative entropy for positive semidefinite operators that
are not positive definite, provided we are willing to have an extended real-valued function.
Specifically, if there exists a vector u ∈ X such that u∗Qu = 0 and u∗Pu 6= 0, or (equivalently)
when

ker(Q) 6⊆ ker(P),

we define S(P‖Q) = ∞. Otherwise, there is no difficulty in evaluating the above expression (10.1)
by following the usual convention of setting 0 log(0) = 0. Nevertheless, it will typically not be
necessary for us to give up the convenience of restricting our attention to positive definite oper-
ators. This is because we already know that the von Neumann entropy function is continuous,
and we will mostly use the quantum relative entropy in this course to establish facts about the
von Neumann entropy.

The quantum relative entropy S(P‖Q) can be negative for some choices of P and Q, but
not when they are density operators (or more generally when Tr(P) = Tr(Q)). The following
theorem establishes that this is so, and in fact that the value of the quantum relative entropy of
two density operators is zero if and only if they are equal.



Theorem 10.6. Let ρ, ξ ∈ D (X ) be positive definite density operators. It holds that

S(ρ‖ξ) ≥ 1
2 ln(2)

‖ρ− ξ‖2
2 .

Proof. Let us first note that for every choice of α, β ∈ (0, 1) we have

α ln(α)− α ln(β) = (α− β)η′(β) + η(β)− η(α) + α− β.

Moreover, by Taylor’s Theorem, we have that

(α− β)η′(β) + η(β)− η(α) = −1
2

η′′(γ)(α− β)2

for some choice of γ lying between α and β.
Now, let n = dim(X ) and let

ρ =
n

∑
i=1

pixix∗i and ξ =
n

∑
i=1

qiyiy∗i

be spectral decompositions of ρ and ξ. The assumption that ρ and ξ are positive definite density
operators implies that pi and qi are positive for 1 ≤ i ≤ n. Applying the facts observed above,
we have that

S(ρ‖ξ) = 1
ln(2) ∑

1≤i,j≤n

∣∣〈xi, yj
〉∣∣2 (pi ln(pi)− pi ln(qj))

=
1

ln(2) ∑
1≤i,j≤n

∣∣〈xi, yj
〉∣∣2 (qj − pi −

1
2

η′′(γij)(pi − qj)
2
)

for some choice of real numbers {γij}, where each γij lies between pi and qj. In particular, this
means that 0 < γij ≤ 1, implying that −η′′(γij) ≥ 1, for each choice of i and j. Consequently we
have

S(ρ‖ξ) ≥ 1
2 ln(2) ∑

1≤i,j≤n

∣∣〈xi, yj
〉∣∣2 (pi − qj)

2 =
1

2 ln(2)
‖ρ− ξ‖2

2

as required.

The following corollary represents a simple application of this fact. (We could just as easily
prove it using analogous facts about the Shannon entropy, but the proof is essentially the same.)

Corollary 10.7. Let X be a complex Euclidean space and let n = dim(X ). It holds that 0 ≤ S(ρ) ≤
log(n) for all ρ ∈ D (X ). Furthermore, ρ = 1/n is the unique density operator in D (X ) having
von Neumann entropy equal to log(n).

Proof. The vector of eigenvalues λ(ρ) of any density operator ρ ∈ D (X ) is a probability vector,
so S(ρ) = H(λ(ρ)) is a sum of nonnegative terms, which implies S(ρ) ≥ 0. To prove the upper
bound, let us assume ρ is a positive definite density operator, and consider the relative entropy
S(ρ‖1/n). We have

0 ≤ S(ρ‖1/n) = −S(ρ)− log(1/n)Tr(ρ) = −S(ρ) + log(n).

Therefore S(ρ) ≤ log(n), and when ρ is not equal to 1/n the inequality becomes strict. For den-
sity operators ρ that are not positive definite, the result follows from the continuity of von Neu-
mann entropy.



Now let us prove two simple properties of the von Neumann entropy: subadditivity and
concavity. These properties also hold for the Shannon entropy—and while it is not difficult
to prove them directly for the Shannon entropy, we get the properties for free once they are
established for the von Neumann entropy.

When we refer to the von Neumann entropy of some collection of registers, we mean the
von Neumann entropy of the state of those registers at some instant. For example, if X and Y are
registers and ρ ∈ D (X ⊗Y) is the state of the pair (X,Y) at some instant, then

S(X,Y) = S(ρ), S(X) = S(ρX), and S(Y) = S(ρY),

where, in accordance with standard conventions, we have written ρX = TrY (ρ) and ρY = TrX (ρ).
We often state properties of the von Neumann entropy in terms of registers, with the under-
standing that whatever statement is being discussed holds for all or some specified subset of
the possible states of these registers. A similar convention is used for the Shannon entropy (for
classical registers).

Theorem 10.8 (Subadditivity of von Neumann entropy). Let X and Y be quantum registers. For
every state of the pair (X,Y) we have

S(X,Y) ≤ S(X) + S(Y).

Proof. Assume that the state of the pair (X,Y) is ρ ∈ D (X ⊗Y). We will prove the theorem for ρ
positive definite, from which the general case follows by continuity.

Consider the quantum relative entropy S(ρXY‖ρX ⊗ ρY). Using the formula

log(P⊗Q) = log(P)⊗ 1 + 1⊗ log(Q)

we find that
S(ρXY‖ρX ⊗ ρY) = −S(ρXY) + S(ρX) + S(ρY).

By Theorem 10.6 we have S(ρXY‖ρX ⊗ ρY) ≥ 0, which completes the proof.

In the next lecture we will prove a much stronger version of subadditivity, which is aptly
named: strong subadditivity. It will imply the truth of the previous theorem, but it is instructive
to compare the very easy proof above with the much more difficult proof of strong subadditivity.

Subadditivity also holds for the Shannon entropy:

H(X,Y) ≤ H(X) + H(Y)

for any choice of classical registers X and Y. This is simply a special case of the above theorem,
where the density operator ρ is diagonal with respect to the standard basis of X ⊗Y .

Subadditivity implies that the von Neumann entropy is concave, as is established by the proof
of the following theorem.

Theorem 10.9 (Concavity of von Neumann entropy). Let ρ, ξ ∈ D (X ) and λ ∈ [0, 1]. It holds that

S(λρ + (1− λ)ξ) ≥ λS(ρ) + (1− λ)S(ξ).

Proof. Let Y be a register corresponding to a single qubit, so that its associated space is Y = C{0,1}.
Consider the density operator

σ = λρ⊗ E0,0 + (1− λ)ξ ⊗ E1,1,



and suppose that the state of the registers (X,Y) is described by σ. We have

S(X,Y) = λS(ρ) + (1− λ)S(ξ) + H(λ),

which is easily established by considering spectral decompositions of ρ and ξ. (Here we have
referred to the binary entropy function H(λ) = −λ log(λ)− (1− λ) log(1− λ).) Furthermore, we
have

S(X) = S(λρ + (1− λ)ξ)

and
S(Y) = H(λ).

It follows by subadditivity that

λS(ρ) + (1− λ)S(ξ) + H(λ) ≤ S(λρ + (1− λ)ξ) + H(λ)

which proves the theorem.

Concavity also holds for the Shannon entropy as a simple consequence of this theorem, as we
may take ρ and ξ to be diagonal with respect to the standard basis.

10.3 Conditional entropy and mutual information

Let us finish off the lecture by defining a few more quantities associated with the von Neumann
entropy. We will not be able to say very much about these quantities until after we prove strong
subadditivity in the next lecture.

Classically we define the conditional Shannon entropy as follows for two classical registers X
and Y:

H(X|Y) = ∑
a

Pr[Y = a]H(X|Y = a).

This quantity represents the expected value of the entropy of X given that you know the value
of Y. It is not hard to prove that

H(X|Y) = H(X,Y)− H(Y).

It follows from subadditivity that
H(X|Y) ≤ H(X).

The intuition is that your uncertainty can only increase when you know less.
In the quantum setting the first definition does not really make sense, so we use the second

fact as our definition—the conditional von Neumann entropy of X given Y is

S(X|Y) = S(X,Y)− S(Y).

Now we start to see some strangeness: we can have S(Y) > S(X,Y), as we will if (X,Y) is in a
pure, non-product state. This means that S(X|Y) can be negative, but such is life.

Next, the (classical) mutual information between two classical registers X and Y is defined as

I(X : Y) = H(X) + H(Y)− H(X,Y).

This can alternately be expressed as

I(X : Y) = H(Y)− H(Y|X) = H(X)− H(X|Y).



We view this quantity as representing the amount of information in X about Y and vice versa.
The quantum mutual information is defined similarly:

S(X : Y) = S(X) + S(Y)− S(X,Y).

At least we know from subadditivity that this quantity is always nonnegative. We will, however,
need to further develop our understanding before we can safely associate any intuition with this
quantity.
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