
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 9: Entropy and compression

For the next several lectures we will be discussing the von Neumann entropy and various con-
cepts relating to it. This lecture is intended to introduce the notion of entropy and its connection
to compression.

9.1 Shannon entropy

Before we discuss the von Neumann entropy, we will take a few moments to discuss the Shannon
entropy. This is a purely classical notion, but it is appropriate to start here. The Shannon entropy
of a probability vector p ∈ RΣ is defined as follows:

H(p) = − ∑
a∈Σ

p(a)>0

p(a) log(p(a)).

Here, and always in this course, the base of the logarithm is 2. (We will write ln(α) if we wish
to refer to the natural logarithm of a real number α.) It is typical to express the Shannon entropy
slightly more concisely as

H(p) = − ∑
a∈Σ

p(a) log(p(a)),

which is meaningful if we make the interpretation 0 log(0) = 0. This is sensible given that

lim
α→0+

α log(α) = 0.

There is no reason why we cannot extend the definition of the Shannon entropy to arbitrary
vectors with nonnegative entries if it is useful to do this—but mostly we will focus on probability
vectors.

There are standard ways to interpret the Shannon entropy. For instance, the quantity H(p)
can be viewed as a measure of the amount of uncertainty in a random experiment described by
the probability vector p, or as a measure of the amount of information one gains by learning
the value of such an experiment. Indeed, it is possible to start with simple axioms for what a
measure of uncertainty or information should satisfy, and to derive from these axioms that such
a measure must be equivalent to the Shannon entropy.

Something to keep in mind, however, when using these interpretations as a guide, is that
the Shannon entropy is usually only a meaningful measure of uncertainty in an asymptotic
sense—as the number of experiments becomes large. When a small number of samples from
some experiment is considered, the Shannon entropy may not conform to your intuition about
uncertainty, as the following example is meant to demonstrate.

Example 9.1. Let Σ = {0, 1, . . . , 2m2}, and define a probability vector p ∈ RΣ as follows:

p(a) =

{
1− 1

m a = 0,
1
m 2−m2

1 ≤ a ≤ 2m2
.



It holds that H(p) > m, and yet the outcome 0 appears with probability 1− 1/m. So, as m grows,
we become more and more “certain” that the outcome will be 0, and yet the “uncertainty” (as
measured by the entropy) goes to infinity.

The above example does not, of course, represent a paradox. The issue is simply that the
Shannon entropy can only be interpreted as measuring uncertainty if the number of random
experiments grows and the probability vector remains fixed, which is opposite to the example.

9.2 Classical compression and Shannon’s source coding theorem

Let us now focus on an important use of the Shannon entropy, which involves the notion of a
compression scheme. This will allow us to attach a concrete meaning to the Shannon entropy.

9.2.1 Compression schemes

Let p ∈ RΣ be a probability vector, and let us take Γ = {0, 1} to be the binary alphabet. For a
positive integer n and real numbers α > 0 and δ ∈ (0, 1), let us say that a pair of mappings

f : Σn → Γm

g : Γm → Σn,

forms an (n, α, δ)-compression scheme for p if it holds that m = bαnc and

Pr [g( f (a1 · · · an)) = a1 · · · an] > 1− δ, (9.1)

where the probability is over random choices of a1, . . . , an ∈ Σ, each chosen independently ac-
cording to the probability vector p.

To understand what a compression scheme means at an intuitive level, let us imagine the
following situation between two people: Alice and Bob. Alice has a device of some sort with a
button on it, and when she presses the button she gets an element of Σ, distributed according
to p, independent of any prior outputs of the device. She presses the button n times, obtaining
outcomes a1 · · · an, and she wants to communicate these outcomes to Bob using as few bits of
communication as possible. So, what Alice does is to compress a1 · · · an into a string of m =
bαnc bits by computing f (a1 · · · an). She sends the resulting bit-string f (a1 · · · an) to Bob, who
then decompresses by applying g, therefore obtaining g( f (a1 · · · an)). Naturally they hope that
g( f (a1 · · · an)) = a1 · · · an, which means that Bob will have obtained the correct sequence a1 · · · an.

The quantity δ is a bound on the probability the compression scheme makes an error. We
may view that the pair ( f , g) works correctly for a string a1 · · · an ∈ Σn if g( f (a1 · · · an)) = a1 · · · an,
so the above equation (9.1) is equivalent to the condition that the pair ( f , g) works correctly with
high probability (assuming δ is small).

9.2.2 Statement of Shannon’s source coding theorem

In the discussion above, the number α represents the average number of bits the compression
scheme needs in order to represent each sample from the distribution described by p. It is
obvious that compression schemes will exist for some numbers α and not others. The particular
values of α for which it is possible to come up with a compression scheme are closely related to
the Shannon entropy H(p), as the following theorem establishes.



Theorem 9.2 (Shannon’s source coding theorem). Let Σ be a finite, non-empty set, let p ∈ RΣ be a
probability vector, let α > 0, and let δ ∈ (0, 1). The following statements hold.

1. If α > H(p), then there exists an (n, α, δ)-compression scheme for p for all but finitely many choices
of n ∈N.

2. If α < H(p), then there exists an (n, α, δ)-compression scheme for p for at most finitely many choices
of n ∈N.

It is not a mistake, by the way, that both statements hold for any fixed choice of δ ∈ (0, 1),
regardless of whether it is close to 0 or 1 (for instance). This will make sense when we see the
proof.

It should be mentioned that the above statement of Shannon’s source coding theorem is
specific to the somewhat simplified (fixed-length) notion of compression that we have defined. It
is more common, in fact, to consider variable-length compressions and to state Shannon’s source
coding theorem in terms of the average length of compressed strings. The reason why we restrict
our attention to fixed-length compression schemes is that this sort of scheme will be more natural
when we turn to the quantum setting.

9.2.3 Typical strings

Before we can prove the above theorem, we will need to develop the notion of a typical string.
For a given probability vector p ∈ RΣ, positive integer n, and positive real number ε, we say that
a string a1 · · · an ∈ Σn is ε-typical (with respect to p) if

2−n(H(p)+ε) < p(a1) · · · p(an) < 2−n(H(p)−ε).

We will need to refer to the set of all ε-typical strings of a given length repeatedly, so let us give
this set a name:

Tn,ε(p) =
{

a1 · · · an ∈ Σn : 2−n(H(p)+ε) < p(a1) · · · p(an) < 2−n(H(p)−ε)
}

.

When the probability vector p is understood from context we write Tn,ε rather than Tn,ε(p).
The following lemma establishes that a random selection of a string a1 · · · an is very likely to

be ε-typical as n gets large.

Lemma 9.3. Let p ∈ RΣ be a probability vector and let ε > 0. It holds that

lim
n→∞ ∑

a1···an∈Tn,ε(p)
p(a1) · · · p(an) = 1

Proof. Let Y1, . . . , Yn be independent and identically distributed random variables defined as fol-
lows: we choose a ∈ Σ randomly according to the probability vector p, and then let the output
value be the real number − log(p(a)) for whichever value of a was selected. It holds that the
expected value of each Yj is

E[Yj] = − ∑
a∈Σ

p(a) log(p(a)) = H(p).

The conclusion of the lemma may now be written

lim
n→∞

Pr

[∣∣∣∣∣ 1
n

n

∑
j=1

Yj − H(p)

∣∣∣∣∣ ≥ ε

]
= 0,

which is true by the weak law of large numbers.



Based on the previous lemma, it is straightforward to place upper and lower bounds on the
number of ε-typical strings, as shown in the following lemma.

Lemma 9.4. Let p ∈ RΣ be a probability vector and let ε be a positive real number. For all but finitely
many positive integers n it holds that

(1− ε)2n(H(p)−ε) < |Tn,ε | < 2n(H(p)+ε).

Proof. The upper bound holds for all n. Specifically, by the definition of ε-typical, we have

1 ≥ ∑
a1···an∈Tn,ε

p(a1) · · · p(an) > 2−n(H(p)+ε) |Tn,ε | ,

and therefore |Tn,ε | < 2n(H(p)+ε).
For the lower bound, let us choose n0 so that

∑
a1···an∈Tn,ε

p(a1) · · · p(an) > 1− ε

for all n ≥ n0, which is possible by Lemma 9.3. For all n ≥ n0 we have

1− ε < ∑
a1···an∈Tn,ε

p(a1) · · · p(an) < |Tn,ε | 2−n(H(p)−ε),

and therefore |Tn,ε | > (1− ε)2n(H(p)−ε), which completes the proof.

9.2.4 Proof of Shannon’s source coding theorem

We now have the necessary tools to prove Shannon’s source coding theorem. Having developed
some basic properties of typical strings, the proof is very simple: a good compression function
is obtained by simply assigning a unique binary string to each typical string, with every other
string mapped arbitrarily. On the other hand, any compression scheme that fails to account for a
large fraction of the typical strings will be shown to fail with very high probability.

Proof of Theorem 9.2. First assume that α > H(p), and choose ε > 0 so that α > H(p) + 2ε. For
every choice of n > 1/ε we therefore have that

m = bαnc > n(H(p) + ε).

Now, because
|Tn,ε | < 2n(H(p)+ε) < 2m,

we may defined a function f : Σn → Γm that is 1-to-1 when restricted to Tn,ε, and we may define
g : Γm → Σn appropriately so that g( f (a1 · · · an)) = a1 · · · an for every a1 · · · an ∈ Tn,ε. As

Pr [g( f (a1 · · · an)) = a1 · · · an] ≥ Pr[a1 · · · an ∈ Tn,ε] = ∑
a1···an∈Tn,ε

p(a1) · · · p(an),

we have that this quantity is greater than 1− δ for sufficiently large n.
Now let us prove the second item, where we assume α < H(p). It is clear from the definition

of an (n, α, δ)-compression scheme that such a scheme can only work correctly for at most 2bαnc



strings a1 · · · an. Let us suppose such a scheme is given for each n, and let Gn ⊆ Σn be the
collection of strings on which the appropriate scheme works correctly. If we can show that

lim
n→∞

Pr[a1 · · · an ∈ Gn] = 0 (9.2)

then we will be finished.
Toward this goal, let us note that for every n and ε, we have

Pr[a1 · · · an ∈ Gn] ≤ Pr[a1 · · · an ∈ Gn ∩ Tn,ε] + Pr[a1 · · · an 6∈ Tn,ε]

≤ |Gn | 2−n(H(p)−ε) + Pr[a1 · · · an 6∈ Tn,ε].

Choose ε > 0 so that α < H(p)− ε. It follows that

lim
n→∞
|Gn | 2−n(H(p)−ε) = 0.

As
lim
n→∞

Pr[a1 · · · an 6∈ Tn,ε] = 0

by Lemma 9.3, we have (9.2) as required.

9.3 Von Neumann entropy

Next we will discuss the von Neumann entropy, which may be viewed as a quantum information-
theoretic analogue of the Shannon entropy. We will spend the next few lectures after this one
discussing the properties of the von Neumann entropy as well as some of its uses—but for now
let us just focus on the definition.

Let X be a complex Euclidean space, let n = dim(X ), and let ρ ∈ D (X ) be a density operator.
The von Neumann entropy of ρ is defined as

S(ρ) = H(λ(ρ)),

where λ(ρ) = (λ1(ρ), . . . , λn(ρ)) is the vector of eigenvalues of ρ. An equivalent expression is

S(ρ) = −Tr(ρ log(ρ)),

where log(ρ) is the Hermitian operator that has exactly the same eigenvectors as ρ, and we
take the base 2 logarithm of the corresponding eigenvalues. Technically speaking, log(ρ) is only
defined for ρ positive definite, but ρ log(ρ) may be defined for all positive semidefinite ρ by
interpreting 0 log(0) as 0, just like in the definition of the Shannon entropy.

9.4 Quantum compression

There are some ways in which the von Neumann entropy is similar to the Shannon entropy and
some ways in which it is very different. One way in which they are quite similar is in their
relationships to notions of compression.



9.4.1 Informal discussion of quantum compression

To explain quantum compression, let us imagine a scenario between Alice and Bob that is similar
to the classical scenario we discussed in relation to classical compression. We imagine that Alice
has a collection of identical registers X1,X2, . . . ,Xn, whose associated complex Euclidean spaces
are X1 = CΣ, . . . ,Xn = CΣ for some finite and nonempty set Σ. She wants to compress the contents
of these registers into m = bαnc qubits, for some choice of α > 0, and to send those qubits to
Bob. Bob will then decompress the qubits to (hopefully) obtain registers X1,X2, . . . ,Xn with little
disturbance to their initial state.

It will not gnenerally be possible for Alice to do this without some assumption on the state
of (X1,X2, . . . ,Xn). Our assumption will be analogous to the classical case: we assume that the
states of these registers are independent and described by some density operator ρ ∈ D (X ) (as
opposed to a probability vector p ∈ RΣ). That is, the state of the collection of registers will be
assumed to be ρ⊗n ∈ D (X1 ⊗ · · · ⊗ Xn), where

ρ⊗n = ρ⊗ · · · ⊗ ρ (n times).

What we will show is that for large n, compression will be possible for α > S(ρ) and impossible
for α < S(ρ).

To speak more precisely about what is meant by quantum compression and decompression,
let us consider that α > 0 has been fixed, let m = bαnc, and let Y1, . . . ,Ym be qubit registers,
meaning that their associated spaces Y1, . . . ,Ym are each equal to CΓ, for Γ = {0, 1}. Alice’s
compression mapping will be a channel

Φ ∈ C (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym)

and Bob’s decompression mapping will be a channel

Ψ ∈ C (Y1 ⊗ · · · ⊗ Ym,X1 ⊗ · · · ⊗ Xn) .

Now, we need to be careful about how we measure the accuracy of quantum compression
schemes. Our assumption on the state of (X1,X2, . . . ,Xn) does not rule out the existence of other
registers that these registers may be entangled or otherwise correlated with—so let us imagine
that there exists another register Z, and that the initial state of (X1,X2, . . . ,Xn,Z) is

ξ ∈ D (X1 ⊗ · · · ⊗ Xn ⊗Z) .

When Alice compresses and Bob decompresses X1, . . . ,Xn, the resulting state of (X1,X2, . . . ,Xn,Z)
is given by (

ΨΦ⊗ 1L(Z)

)
(ξ).

For the compression to be successful, we require that this density operator is close to ξ. This must
in fact hold for all choices of Z and ξ, provided that the assumption TrZ (ξ) = ρ⊗n is met. There
is nothing unreasonable about this assumption—it is the natural quantum analogue to requiring
that g( f (a1 · · · an)) = a1 · · · an for classical compression.

It might seem complicated that we have to worry about all possible registers Z and all ξ ∈
D (X1 ⊗ · · · ⊗ Xn ⊗Z) that satisfy TrZ (ξ) = ρ⊗n, but in fact it will be simple if we make use of
the notion of channel fidelity.



9.4.2 Quantum channel fidelity

Consider a channel Ξ ∈ C (W) for some complex Euclidean space W , and let σ ∈ D (W) be a
density operator on this space. We define the channel fidelity between Ξ and σ to be

Fchannel(Ξ, σ) = inf{F(ξ, (Ξ⊗ 1L(Z))(ξ))},

where the infimum is over all complex Euclidean spaces Z and all ξ ∈ D (W ⊗Z) satisfying
TrZ (ξ) = σ. The channel fidelity Fchannel(Ξ, σ) places a lower bound on the fidelity of the input
and output of a given channel Ξ provided that it acts on a part of a larger system whose state
is σ when restricted to the part on which Ξ acts.

It is not difficult to prove that the infimum in the definition of the channel fidelity may be
restricted to pure states ξ = uu∗, given that we could always purify a given ξ (possibly replacing
Z with a larger space) and use the fact that the fidelity function is non-decreasing under partial
tracing. With this in mind, consider any complex Euclidean space Z , let u ∈ W ⊗ Z be any
purification of σ, and consider the fidelity

F
(

uu∗,
(

Ξ⊗ 1L(Z)

)
(uu∗)

)
=

√〈
uu∗,

(
Ξ⊗ 1L(Z)

)
(uu∗)

〉
.

The purification u ∈ W ⊗Z of σ must take the form

u = vec
(√

σB
)

for some operator B ∈ L (Z ,W) satisfying BB∗ = Πim(σ). Assuming that

Ξ(X) =
k

∑
j=1

AiXA∗i

is a Kraus representation of Ξ, it therefore holds that

F
(

uu∗,
(

Ξ⊗ 1L(Z)

)
(uu∗)

)
=

√√√√ k

∑
j=1

∣∣〈√σB, Aj
√

σB
〉∣∣2 =

√√√√ k

∑
j=1

∣∣〈σ, Aj
〉∣∣2.

So, it turns out that this quantity is independent of the particular purification of σ that was
chosen, and we find that we could alternately have defined the channel fidelity of Ξ with σ as

Fchannel(Ξ, σ) =

√√√√ k

∑
j=1

∣∣〈σ, Aj
〉∣∣2.

9.4.3 Schumacher’s quantum source coding theorem

We now have the required tools to establish the relationship between the von Neumann entropy
and quantum compression that was discussed earlier in the lecture. Using the same notation that
was introduced above, let us say that a pair of channels

Φ ∈ C (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym) ,
Ψ ∈ C (Y1 ⊗ · · · ⊗ Ym,X1 ⊗ · · · ⊗ Xn)



is an (n, α, δ)-quantum compression scheme for ρ ∈ D (X ) if m = bαnc and

Fchannel
(
ΨΦ, ρ⊗n) > 1− δ.

The following theorem, which is the quantum analogue to Shannon’s source coding theorem,
establishes conditions on α for which quantum compression is possible and impossible.

Theorem 9.5 (Schumacher). Let ρ ∈ D (X ) be a density operator, let α > 0 and let δ ∈ (0, 1). The
following statements hold.

1. If α > S(ρ), then there exists an (n, α, δ)-quantum compression scheme for ρ for all but finitely many
choices of n ∈N.

2. If α < S(ρ), then there exists an (n, α, δ)-quantum compression scheme for ρ for at most finitely many
choices of n ∈N.

Proof. Assume first that α > S(ρ). We begin by defining a quantum analogue of the set of typical
strings, which is the typical subspace. This notion is based on a spectral decomposition

ρ = ∑
a∈Σ

p(a)uau∗a .

As p is a probability vector, we may consider for each n ≥ 1 the set of ε-typical strings Tn,ε ⊆ Σn

for this distribution. In particular, we form the projection onto the typical subspace:

Πn,ε = ∑
a1···an∈Tn,ε

ua1 u∗a1
⊗ · · · ⊗ uan u∗an

.

Notice that 〈
Πn,ε, ρ⊗n〉 = ∑

a1···an∈Tn,ε

p(a1) · · · p(an),

and therefore
lim
n→∞

〈
Πn,ε, ρ⊗m〉 = 1,

for every choice of ε > 0.
We can now move on to describing a sequence of compression schemes that will suffice to

prove the theorem, provided that α > S(ρ) = H(p). By Shannon’s source coding theorem (or, to
be more precise, our proof of that theorem) we may assume, for sufficiently large n, that we have
a classical (n, α, ε)-compression scheme ( f , g) for p that satisfies

g( f (a1 · · · an)) = a1 · · · an

for all a1 · · · an ∈ Tn,ε. Define a linear operator

A ∈ L (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym)

as
A = ∑

a1···an∈Tn,ε

e f (a1···an)(ua1 ⊗ · · · ⊗ uan)
∗.

for each a1 · · · an ∈ Σn. Notice that
A∗A = Πn,ε.



Now, the mapping defined by X 7→ AXA∗ is completely positive but generally not trace-
preserving. However, it is a sub-channel, by which it is meant that there must exist a completely
positive mapping Ξ for which

Φ(X) = AXA∗ + Ξ(X) (9.3)

is a channel. For instance, we may take

Ξ(X) = 〈1−Πn,ε, X〉 σ

for some arbitrary choice of σ ∈ D (Y1 ⊗ · · · ⊗ Ym). Likewise, the mapping Y 7→ A∗YA is also a
sub-channel, meaning that there must exist a completely positive map ∆ for which

Ψ(Y) = A∗YA + ∆(Y) (9.4)

is a channel.
It remains to argue that, for sufficiently large n, that the pair (Φ, Ψ) is an (n, α, δ)-quantum

compression scheme for any constant δ > 0. From the above expressions (9.3) and (9.4) it is clear
that there exists a Kraus representation of ΨΦ having the form

(ΨΦ)(X) = (A∗A)X(A∗A)∗ +
k

∑
j=1

BjXB∗j

for some collection of operators B1, . . . , Bk that we do not really care about. It follows that

Fchannel(ΨΦ, ρ⊗n) ≥
∣∣〈ρ⊗n, A∗A

〉∣∣ = 〈ρ⊗n, Πn,ε
〉

.

This quantity approaches 1 in the limit, as we have observed, and therefore for sufficiently large
n it must hold that (Φ, Ψ) is an (n, α, δ) quantum compression scheme.

Now consider the case where α < S(ρ). Note that if Πn ∈ Pos (X1 ⊗ · · · ⊗ Xn) is a projection
with rank at most 2n(S(ρ)−ε) for each n ≥ 1, then

lim
n→∞

〈
Πn, ρ⊗n〉 = 0. (9.5)

This is because, for any positive semidefinite operator P, the maximum value of 〈Π, P〉 over all
choices of orthogonal projections Π with rank(Π) ≤ r is precisely the sum of the r largest eigen-
values of P. The eigenvalues of ρ⊗n are the values p(a1) · · · p(an) over all choices of a1 · · · an ∈ Σn,
so for each n we have 〈

Πn, ρ⊗n〉 ≤ ∑
a1···an∈Gn

p(a1) · · · p(an)

for some set Gn of size at most 2n(S(ρ)−ε). At this point the equation (9.5) follows by similar
reasoning to the proof of Theorem 9.2.

Now let us suppose, for each n ≥ 1 and for m = bαnc, that

Φn ∈ C (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym) ,
Ψn ∈ C (Y1 ⊗ · · · ⊗ Ym,X1 ⊗ · · · ⊗ Xn)

are channels. Our goal is to prove that (Φn, Ψn) fails as a quantum compression scheme for all
sufficiently large values of n.



Fix n ≥ 1, and consider Kraus representations

Φn(X) =
k

∑
j=1

AjXA∗j and Ψn(X) =
k

∑
j=1

BjXB∗j ,

where

A1, . . . , Ak ∈ L (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Ym) ,
B1, . . . , Bk ∈ L (Y1 ⊗ · · · ⊗ Ym,X1 ⊗ · · · ⊗ Xn) ,

and where the assumption that they have the same number of terms is easily made without loss
of generality. Let Πj be the projection onto the range of Bj for each j = 1, . . . k, and note that it
obviously holds that

rank(Πj) ≤ dim(Y1 ⊗ · · · ⊗ Ym) = 2m.

By the Cauchy-Schwarz inequality, we have

Fchannel(ΨnΦn, ρ⊗n)2 = ∑
i,j

∣∣〈ρ⊗n, Bj Ai
〉∣∣2

= ∑
i,j

∣∣∣〈Πj
√

ρ⊗n, Bj Ai
√

ρ⊗n
〉∣∣∣2

≤∑
i,j

〈
Πj, ρ⊗n〉 (Tr Bj Aiρ

⊗n A∗i B∗j
)

.

As
Tr
(

Bj Aiρ
⊗n A∗i B∗j

)
≥ 0

for each i, j, and

∑
i,j

Tr
(

Bj Aiρ
⊗n A∗i B∗j

)
= Tr(ΨΦ(ρ⊗n)) = 1,

it follows that
Fchannel(ΨnΦn, ρ⊗n)2 ∈ conv

({〈
Πj, ρ⊗n〉 : j = 1, . . . , k

})
.

As each Πj has rank at most 2m, it follows that

lim
n→∞

Fchannel(ΨnΦn, ρ⊗n) = 0.

So, for all but finitely many choices of n, the pair (Φn, Ψn) fails to be an (n, α, δ) quantum
compression scheme.
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