
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 8: Semidefinite programs for fidelity
and optimal measurements

This lecture is devoted to two examples of semidefinite programs: one is for the fidelity between
two positive semidefinite operators, and the other is for optimal measurements for distinguishing
ensembles of states. The primary goal in studying these examples at this point in the course is
to gain familiarity with the concept of semidefinite programming and how it may be applied to
problems of interest. The examples themselves are interesting, but they should not necessarily be
viewed as primary reasons for studying semidefinite programming—they are simply examples
making use of concepts we have discussed thus far in the course. We will see further applications
of semidefinite programming to quantum information theory later in the course, and there are
many more applications that we will not discuss.

8.1 A semidefinite program for the fidelity function

We begin with a semidefinite program whose optimal value equals the fidelity between to given
positive semidefinite operators. As it represents the first application of semidefinite program-
ming to quantum information theory that we are studying in the course, we will go through it
in some detail.

8.1.1 Specification of the semidefinite program

Suppose P, Q ∈ Pos (X ), where X is a complex Euclidean space, and consider the following
optimization problem:

maximize:
1
2

Tr(X) +
1
2

Tr(X∗)

subject to:
(

P X
X∗ Q

)
≥ 0

X ∈ L (X ) .

Although it is not phrased in the precise form of a semidefinite program as we formally defined
them in the previous lecture, it can be converted to one, as we will now see.

Let us begin by noting that the matrix (
P X

X∗ Q

)
is a block matrix that describes an operator in the space L (X ⊕X ). To phrase the optimization
problem above as a semidefinite program, we will effectively optimize over all positive semidefi-
nite operators in Pos (X ⊕X ), using linear constraints to force the diagonal blocks to be P and Q.



With this idea in mind, we define a linear mapping Φ : L (X ⊕X )→ L (X ⊕X ) as follows:

Φ
(

X1,1 X1,2
X2,1 X2,2

)
=

(
X1,1 0

0 X2,2

)
for all choices of X1,1, X1,2, X2,1, X2,2 ∈ L (X ), and we define A, B ∈ Herm (X ⊕X ) as

A =
1
2

(
0 1

1 0

)
and B =

(
P 0
0 Q

)
.

Now consider the semidefinite program (Φ, A, B), as defined in the previous lecture. The
primal objective function takes the form〈

1
2

(
0 1

1 0

)
,
(

X1,1 X1,2
X2,1 X2,2

)〉
=

1
2

Tr(X1,2) +
1
2

Tr(X2,1).

The constraint

Φ
(

X1,1 X1,2
X2,1 X2,2

)
=

(
P 0
0 Q

)
is equivalent to the conditions X1,1 = P and X2,2 = Q. Of course, the condition(

X1,1 X1,2
X2,1 X2,2

)
∈ Pos (X ⊕X )

forces X2,1 = X∗1,2, as this follows from the Hermiticity of the operator. So, by writing X in place
of X1,2, we see that the optimization problem stated at the beginning of the section is equivalent
to the primal problem associated with (Φ, A, B).

Now let us examine the dual problem. It is as follows:

minimize:
〈(

P 0
0 Q

)
,
(

Y1,1 Y1,2
Y2,1 Y2,2

)〉
subject to: Φ∗

(
Y1,1 Y1,2
Y2,1 Y2,2

)
≥ 1

2

(
0 1

1 0

)
,(

Y1,1 Y1,2
Y2,1 Y2,2

)
∈ Herm (X ⊕X ) .

As is typical when trying to understand the relationship between the primal and dual problems
of a semidefinite program, we must find an expression for Φ∗. This happens to be easy in the
present case, for we have〈(

Y1,1 Y1,2
Y2,1 Y2,2

)
, Φ
(

X1,1 X1,2
X2,1 X2,2

)〉
=

〈(
Y1,1 Y1,2
Y2,1 Y2,2

)
,
(

X1,1 0
0 X2,2

)〉
= 〈Y1,1, X1,1〉+ 〈Y2,2, X2,2〉

and〈
Φ
(

Y1,1 Y1,2
Y2,1 Y2,2

)
,
(

X1,1 X1,2
X2,1 X2,2

)〉
=

〈(
Y1,1 0

0 Y2,2

)
,
(

X1,1 X1,2
X2,1 X2,2

)〉
= 〈Y1,1, X1,1〉+ 〈Y2,2, X2,2〉 ,



so it must hold that Φ∗ = Φ. Simplifying the above problem accordingly yields

minimize: 〈P, Y1,1〉+ 〈Q, Y2,2〉

subject to:
(

Y1,1 0
0 Y2,2

)
≥ 1

2

(
0 1

1 0

)
Y1,1, Y2,2 ∈ Herm (X ) .

The problem has no dependence whatsoever on Y1,2 and Y2,1, so we can ignore them. Let us write
Y = 2Y1,1 and Z = 2Y2,2, so that the problem becomes

minimize:
1
2
〈P, Y〉+ 1

2
〈Q, Z〉

subject to:
(

Y −1

−1 Z

)
≥ 0

Y, Z ∈ Herm (X ) .

There is no obvious reason for including the factor of 2 in the specification of Y and Z; it is simply
a change of variables that is designed to put the problem into a nicer form for the analysis to
come later. The inclusion of the factor of 2 does not, of course, change the fact that Y and Z are
free to range over all Hermitian operators.

In summary, we have this pair of problems:

Primal problem

maximize:
1
2

Tr(X) +
1
2

Tr(X∗)

subject to:
(

P X
X∗ Q

)
≥ 0

X ∈ L (X ) .

Dual problem

minimize:
1
2
〈P, Y〉+ 1

2
〈Q, Z〉

subject to:
(

Y −1

−1 Z

)
≥ 0

Y, Z ∈ Herm (X ) .

We will make some further simplifications to the dual problem a bit later in the lecture, but let
us leave it as it is for the time being.

The statement of the primal and dual problems just given is representative of a typical style
for specifying semidefinite programs: generally one does not explicitly refer to Φ, A, and B, or
operators and mappings coming from other specific forms of semidefinite programs, in applica-
tions of the concept in papers or talks. It would not be unusual to see a pair of primal and dual
problems presented like this without any indication of how the dual problem was obtained from
the primal problem (or vice-versa). This is because the process is more or less routine, once you
know how it is done. (Until you’ve had some practise doing it, however, it may not seem that
way.)

8.1.2 Optimal value

Let us observe that strong duality holds for the semidefinite program above. This is easily
established by first observing that the primal problem is feasible and the dual problem is strictly
feasible, then applying Slater’s theorem. To do this formally, we must refer to the triple (Φ, A, B)
discussed above. Setting (

X1,1 X1,2
X2,1 X2,2

)
=

(
P 0
0 Q

)



gives a primal feasible operator, so that A 6= ∅. Setting(
Y1,1 Y1,2
Y2,1 Y2,2

)
=

(
1 0
0 1

)
gives

Φ∗
(

Y1,1 Y1,2
Y2,1 Y2,2

)
=

(
1 0
0 1

)
>

1
2

(
0 1

1 0

)
,

owing to the fact that (
1 − 1

2 1

− 1
2 1 1

)
=

(
1 − 1

2
− 1

2 1

)
⊗ 1

is positive definite. By Slater’s theorem, we have strong duality, and moreover the optimal primal
value is achieved by some choice of X.

It so happens that strict primal feasibility may fail to hold: if either of P or Q is not positive
definite, it cannot hold that (

P X
X∗ Q

)
> 0.

Note, however, that we cannot conclude from this fact that the optimal dual value will not be
achieved—but indeed this is the case for some choices of P and Q. If P and Q are positive definite,
strict primal feasibility does hold, and the optimal dual value will be achieved, as follows from
Slater’s theorem.

Now let us prove that the optimal value is equal to F(P, Q), beginning with the inequality
α ≥ F(P, Q). To prove this inequality, it suffices to exhibit a primal feasible X for which

1
2

Tr(X) +
1
2

Tr(X∗) = F(P, Q).

We have

F(P, Q) = F(Q, P) =
∥∥∥√Q

√
P
∥∥∥

1
= max

{∣∣∣Tr
(

U
√

Q
√

P
)∣∣∣ : U ∈ U (X )

}
,

and so we may choose a unitary operator U ∈ U (X ) for which

F(P, Q) = Tr
(

U
√

Q
√

P
)
= Tr

(√
PU
√

Q
)

.

(The absolute value can safely be omitted: we are free to multiply any U maximizing the absolute
value with a scalar on the unit circle, obtaining a nonnegative real number for the trace.) Now
define

X =
√

PU
√

Q.

It holds that

0 ≤
(√

P U
√

Q
)∗ (√

P U
√

Q
)
=

( √
P

√
QU∗

)(√
P U

√
Q
)
=

(
P

√
PU
√

Q
√

QU∗
√

P Q

)
,

so X is primal feasible, and we have

1
2

Tr(X) +
1
2

Tr(X∗) = F(P, Q)



as claimed.
Now let us prove the reverse inequality: α ≤ F(P, Q). Suppose that X ∈ L (X ) is primal

feasible, meaning that

R =

(
P X

X∗ Q

)
is positive semidefinite. We may view that R ∈ Pos (Z ⊗X ) for Z = C2. (More generally, the m-
fold direct sum CΣ ⊕ · · · ⊕CΣ may be viewed as being equivalent to the tensor product Cm ⊗CΣ

by identifying the standard basis element e(j,a) of CΣ ⊕ · · · ⊕CΣ with the standard basis element
ej⊗ ea of Cm⊗CΣ, for each j ∈ {1, . . . , m} and a ∈ Σ.) Let Y be a complex Euclidean space whose
dimension is at least rank(R), and let u ∈ Z ⊗X ⊗Y be a purification of R:

TrY (uu∗) = R = E1,1 ⊗ P + E1,2 ⊗ X + E2,1 ⊗ X∗ + E2,2 ⊗Q.

Write
u = e1 ⊗ u1 + e2 ⊗ u2

for u1, u2 ∈ X , and observe that

TrY (u1u∗1) = P, TrY (u2u∗2) = Q, TrY (u1u∗2) = X, and TrY (u2u∗1) = X∗.

We have
1
2

Tr(X) +
1
2

Tr(X∗) =
1
2
〈u2, u1〉+

1
2
〈u1, u2〉 = <(〈u1, u2〉) ≤ |〈u1, u2〉| ≤ F(P, Q),

where the last inequality follows from Uhlmann’s theorem, along with the fact that u1 and u2
purify P and Q, respectively.

8.1.3 Alternate proof of Alberti’s theorem

The notes from Lecture 4 include a proof of Alberti’s theorem, which states that

(F(P, Q))2 = inf
Y∈Pd(X )

〈P, Y〉 〈Q, Y−1〉,

for every choice of positive semidefinite operators P, Q ∈ Pos (X ). We may use our semidefinite
program to obtain an alternate proof of this characterization.

First let us return to the dual problem from above:

Dual problem

minimize:
1
2
〈P, Y〉+ 1

2
〈Q, Z〉

subject to:
(

Y −1

−1 Z

)
≥ 0

Y, Z ∈ Herm (X ) .

To simplify the problem further, let us prove the following claim.

Claim 8.1. Let Y, Z ∈ Herm (X ). It holds that(
Y −1

−1 Z

)
∈ Pos (X ⊗X )

if and only if Y, Z ∈ Pd (X ) and Z ≥ Y−1.



Proof. Suppose Y, Z ∈ Pd (X ) and Z ≥ Y−1. It holds that(
Y −1

−1 Z

)
=

(
1 0
−Y−1 1

)(
Y 0
0 Z−Y−1

)(
1 −Y−1

0 1

)
and therefore (

Y −1

−1 Z

)
∈ Pos (X ⊗X ) .

Conversely, suppose that (
Y −1

−1 Z

)
∈ Pos (X ⊗X ) .

It holds that

0 ≤
(

u
v

)∗ ( Y −1

−1 Z

)(
u
v

)
= u∗Yu− u∗v− v∗u + v∗Zv

for all u, v ∈ X . If Y were not positive definite, there would exist a unit vector v for which
v∗Yv = 0, and one could then set

u =
1
2
(‖Z‖+ 1)v

to obtain
‖Z‖ ≥ v∗Zv ≥ 〈u, v〉+ 〈v, u〉 = ‖Z‖+ 1,

which is absurd. Thus, Y ∈ Pd (X ). Finally, by inverting the expression above, we have(
Y 0
0 Z−Y−1

)
=

(
1 0

Y−1 1

)(
Y −1

−1 Z

)(
1 Y−1

0 1

)
∈ Pos (X ⊗X ) ,

which implies Z ≥ Y−1 (and therefore Z ∈ Pd (X )) as required.

Now, given that Q is positive semidefinite, it holds that 〈Q, Z〉 ≥ 〈Q, Y−1〉 whenever Z ≥ Y−1,
so there would be no point in choosing any Z other than Y−1 when aiming to minimize the dual
objective function subject to that constraint. The dual problem above can therefore be phrased as
follows:

Dual problem

minimize:
1
2
〈P, Y〉+ 1

2
〈Q, Y−1〉

subject to: Y ∈ Pd (X ) .

Given that strong duality holds for our semidefinite program, and that we know the optimal
value to be F(P, Q), we have the following theorem.

Theorem 8.2. Let X be a complex Euclidean space and let P, Q ∈ Pos (X ). It holds that

F(P, Q) = inf
{

1
2
〈P, Y〉+ 1

2
〈Q, Y−1〉 : Y ∈ Pd (X )

}
.



To see that this is equivalent to Alberti’s theorem, note that for every Y ∈ Pd (X ) it holds that

1
2
〈P, Y〉+ 1

2
〈Q, Y−1〉 ≥

√
〈P, Y〉〈Q, Y−1〉,

with equality if and only if 〈P, Y〉 = 〈Q, Y−1〉 (by the arithmetic-geometric mean inequality). It
follows that

inf
Y∈Pd(X )

〈P, Y〉 〈Q, Y−1〉 ≤ (F(P, Q))2 .

Moreover, for an arbitrary choice of Y ∈ Pd (X ), one may choose λ > 0 so that

〈P, λY〉 = 〈Q, (λY)−1〉

and therefore

1
2
〈P, λY〉+ 1

2
〈Q, (λY)−1〉 =

√
〈P, λY〉〈Q, (λY)−1〉 =

√
〈P, Y〉〈Q, Y−1〉.

Thus,
inf

Y∈Pd(X )
〈P, Y〉 〈Q, Y−1〉 ≥ (F(P, Q))2 .

We therefore have that Alberti’s theorem is a corollary to the theorem above, as claimed.

Theorem 8.3 (Alberti). Let X be a complex Euclidean space and let P, Q ∈ Pos (X ). It holds that

(F(P, Q))2 = inf
Y∈Pd(X )

〈P, Y〉 〈Q, Y−1〉.

8.2 Optimal measurements

We will now move on to the second example of the lecture of a semidefinite programming
application to quantum information theory. This example concerns the notion of optimal mea-
surements for distinguishing elements of an ensemble of states.

Suppose that X is a complex Euclidean space, Γ is a finite and nonempty set, p ∈ RΓ is a
probability vector, and {ρa : a ∈ Γ} ⊂ D (X ) is a collection of density operators. Consider the
scenario in which Alice randomly selects a ∈ Γ according to the probability distribution described
by p, then prepares a register X in the state ρa for whichever element a ∈ Γ she selected. She
sends X to Bob, whose goal is to identify the element a ∈ Γ selected by Alice with as high a
probability as possible. He must do this by means of a measurement µ : Γ → Pos (X ) : a 7→ Pa
on X, without any additional help or input from Alice. Bob’s optimal probability is given by the
maximum value of

∑
a∈Γ

p(a) 〈Pa, ρa〉

over all measurements µ : Γ→ Pos (X ) : a 7→ Pa on X .
It is natural to associate an ensemble of states with the process performed by Alice. This is a

collection
E = {(p(a), ρa) : a ∈ Γ} ,

which can be described more succinctly by a mapping

η : Γ→ Pos (X ) : a 7→ σa,



where σa = p(a)ρa for each a ∈ Γ. In general, any mapping η of the above form represents an
ensemble if and only if

∑
a∈Γ

σa ∈ D (X ) .

To recover the description of a collection E = {(p(a), ρa) : a ∈ Γ} representing such an ensemble,
one may take p(a) = Tr(σa) and ρa = σa/ Tr(σa). Thus, each σa is generally not a density operator,
but may be viewed as an unnormalized density operator that describes both a density operator
and the probability that it is selected.

Now, let us say that a measurement µ : Γ → Pos (X ) is an optimal measurement for a given
ensemble η : Γ→ Pos (X ) if and only if it holds that

∑
a∈Γ
〈µ(a), η(a)〉

is maximal among all possible choices of measurements that could be substituted for µ in this
expression. We will prove the following theorem, which provides a simple condition (both nec-
essary and sufficient) for a given measurement to be optimal for a given ensemble.

Theorem 8.4. Let X be a complex Euclidean space, let Γ be a finite and nonempty set, let η : Γ →
Pos (X ) : a 7→ σa be an ensemble of states, and let µ : Γ→ Pos (X ) : a 7→ Pa be a measurement. It holds
that µ is optimal for η if and only if the operator

Y = ∑
a∈Γ

σaPa

is Hermitian and satisfies Y ≥ σa for each a ∈ Γ.

The following proposition, which states a property known as complementary slackness for
semidefinite programs, will be used to prove the theorem.

Proposition 8.5 (Complementary slackness for SDPs). Suppose (Φ, A, B) is a semidefinite program,
and that X ∈ A and Y ∈ B satisfy 〈A, X〉 = 〈B, Y〉. It holds that

Φ∗(Y)X = AX and Φ(X)Y = BY.

Remark 8.6. Note that the second equality stated in the proposition is completely trivial, given
that Φ(X) = B for all X ∈ A. It is stated nevertheless in the interest of illustrating the symmetry
between the primal and dual forms of semidefinite programs.

Proof. It holds that
〈A, X〉 = 〈B, Y〉 = 〈Φ(X), Y〉 = 〈Φ∗(Y), X〉 ,

so
〈Φ∗(Y)− A, X〉 = 0.

Both Φ∗(Y) − A and X are positive semidefinite, given that X and Y are feasible. The inner
product of two positive semidefinite operators is zero if and only if their product is zero, and so
we obtain

(Φ∗(Y)− A) X = 0.

This implies the first equality in the proposition, as required.



Next, we will phrase the problem of maximizing the probability of correctly identifying the
states in an ensemble as a semidefinite program. We suppose that an ensemble

η : Γ→ Pos (X ) : a 7→ σa

is given, and define a semidefinite program as follows. Let Y = CΓ, let A ∈ Herm (Y ⊗X ) be
given by

A = ∑
a∈Γ

Ea,a ⊗ σa,

and consider the partial trace TrY as an element of T (Y ⊗X ,X ). The semidefinite program to
be considered is (TrY , A, 1X ), and with it one associates the following problems:

Primal problem

maximize: 〈A, X〉
subject to: TrY (X) = 1X ,

X ∈ Pos (Y ⊗X ) .

Dual problem

minimize: Tr(Y)
subject to: 1Y ⊗Y ≥ A

Y ∈ Herm (X ) .

To see that the primal problem represents the optimization problem we are interested in,
which is the maximization of

∑
a∈Γ
〈Pa, σa〉 = ∑

a∈Γ
〈σa, Pa〉

over all measurements {Pa : a ∈ Γ}, we note that any X ∈ L (Y ⊗X ) may be written

X = ∑
a,b∈Γ

Ea,b ⊗ Xa,b

for {Xa,b : a, b ∈ Γ} ⊂ L (X ), that the objective function is then given by

〈A, X〉 = ∑
a∈Γ
〈σa, Xa,a〉

and that the constraint TrY (X) = 1X is given by

∑
a∈Γ

Xa,a = 1X .

As X ranges over all positive semidefinite operators in Pos (Y ⊗X ), the operators Xa,a individ-
ually and independently range over all possible positive semidefinite operators in Pos (X ). The
“off-diagonal” operators Xa,b, for a 6= b, have no influence on the problem at all, and can safely
be ignored. Writing Pa in place of Xa,a, we see that the primal problem can alternately be written

Primal problem

maximize: ∑
a∈Γ
〈σa, Pa〉

subject to: {Pa : a ∈ Γ} ⊂ Pos (X )

∑
a∈Γ

Pa = 1X ,



which is the optimization problem of interest.
The dual problem can be simplified by noting that the constraint

1Y ⊗Y ≥ A

is equivalent to
∑
a∈Γ

Ea,a ⊗ (Y− σa) ∈ Pos (Y ⊗X ) ,

which in turn is equivalent to Y ≥ σa for each a ∈ Γ.
To summarize, we have the following pair of optimization problems:

Primal problem

maximize: ∑
a∈Γ
〈σa, Pa〉

subject to: {Pa : a ∈ Γ} ⊂ Pos (X )

∑
a∈Γ

Pa = 1X ,

Dual problem

minimize: Tr(Y)
subject to: Y ≥ σa (for all a ∈ Γ)

Y ∈ Herm (X ) .

Strict feasibility is easy to show for this semidefinite program: we may take

X =
1
|Γ|1Y ⊗ 1X and Y = 21X

to obtain strictly feasible primal and dual solutions. By Slater’s theorem, we have strong duality,
and moreover that optimal values are always achieved in both problems.

We are now in a position to prove Theorem 8.4. Suppose first that the measurement µ is
optimal for η, so that {Pa : a ∈ Γ} is optimal for the semidefinite program above. Somewhat
more formally, we have that

X = ∑
a∈Γ

Ea,a ⊗ Pa

is an optimal primal solution to the semidefinite program (TrY , A, 1X ). Take Z to be any opti-
mal solution to the dual problem, which we know exists because the optimal solution is always
achievable for both the primal and dual problems. By complementary slackness (i.e., Proposi-
tion 8.5) it holds that

Tr∗Y (Z)X = AX,

which expands to
∑
a∈Γ

Ea,a ⊗ ZPa = ∑
a∈Γ

Ea,a ⊗ σaPa,

implying
ZPa = σaPa

for each a ∈ Γ. Summing over a ∈ Γ yields

Z = ∑
a∈Γ

σaPa = Y.

It therefore holds that Y is dual feasible, implying that Y is Hermitian and satisfies Y ≥ σa for
each a ∈ Γ.



Conversely, suppose that Y is Hermitian and satisfies Y ≥ σa for each a ∈ Γ. This means that
Y is dual feasible. Given that

Tr(Y) = ∑
a∈Γ
〈σa, Pa〉 ,

we find that {Pa : a ∈ Γ} must be an optimal primal solution by weak duality, as it equals
the value achieved by a dual feasible solution. The measurement µ is therefore optimal for the
ensemble η.
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