
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 6: Further remarks on measurements and channels

In this lecture we will discuss a few loosely connected topics relating to measurements and
channels. These discussions will serve to illustrate some of the concepts we have discussed in
previous lectures, and are also an opportunity to introduce a few notions that will be handy in
future lectures.

6.1 Measurements as channels and nondestructive measurements

We begin with two simple points concerning measurements. The first explains how measure-
ments may be viewed as special types of channels, and the second introduces the notion of
nondestructive measurements (which were commented on briefly in Lecture 3).

6.1.1 Measurements as channels

Suppose that we have a measurement µ : Γ → Pos (X ) on a register X. When this measurement
is performed, X ceases to exist, and the measurement result is transmitted to some hypothetical
observer that we generally think of as being external to the system being described or considered.

We could, however, imagine that the measurement outcome is stored in a new register Y,
whose classical state set is chosen to be Γ, rather than imagining that it is transmitted to an
external observer. Taking this point of view, the measurement µ corresponds to a channel Φ ∈
C (X ,Y), where

Φ(X) = ∑
a∈Γ
〈µ(a), X〉 Ea,a

for every X ∈ L (X ). For any density operator ρ ∈ D (X ), the output Φ(ρ) is “classical” in
the sense that it is a convex combination of states of the form Ea,a, which we identify with the
classical state a for each a ∈ Γ.

Of course we expect that Φ should be a valid channel, but let us verify that this is so. It is
clear that Φ is linear and preserves trace, as

Tr(Φ(X)) = ∑
a∈Γ
〈µ(a), X〉Tr(Ea,a) = ∑

a∈Γ
〈µ(a), X〉 = 〈1X , X〉 = Tr(X)

for every X ∈ L (X ). To see that Φ is completely positive we may compute the Choi-Jamiołkowski
representation

J(Φ) = ∑
b,c∈Σ

∑
a∈Γ
〈µ(a), Eb,c〉 Ea,a ⊗ Eb,c = ∑

a∈Γ
Ea,a ⊗

(
∑

b,c∈Σ
〈µ(a), Eb,c〉 Eb,c

)
= ∑

a∈Γ
Ea,a ⊗ µ(a)T,

where we have assumed that X = CΣ. Each µ(a) is positive semidefinite, and so J(Φ) ∈
Pos (Y ⊗X ), which proves that Φ is completely positive.



An alternate way to see that Φ is indeed a channel is to use Naimark’s theorem, which implies
that µ(a) = A∗(1X ⊗ Ea,a)A for some isometry A ∈ U (X ,X ⊗Y). It holds that

Φ(X) = ∑
a∈Γ
〈A∗(1X ⊗ Ea,a)A, X〉 Ea,a = ∑

a∈Γ
Ea,a TrX (AXA∗) Ea,a,

which is the composition of two channels: Φ = ∆Ψ, where Ψ(X) = TrX (AXA∗) and

∆(Y) = ∑
a∈Γ

Ea,aYEa,a

is the completely dephasing channel (which effectively zeroes out all off-diagonal entries of a matrix
and leaves the diagonal alone). The composition of two channels is a channel, so we have that Φ
is a channel.

6.1.2 Nondestructive measurements

Sometimes it is convenient to consider measurements that do not destroy registers, but rather
leave them in some state that may depend on the measurement outcome that is obtained from
the measurement. We will refer to such processes as non-destructive measurements.

Formally, a non-destructive measurement on a space X is a function

ν : Γ→ L (X ) : a 7→ Ma,

for some finite, non-empty set of measurement outcomes Γ, that satisfies the constraint

∑
a∈Γ

M∗a Ma = 1X .

When a non-destructive measurement of this form is applied to a register X that has reduced
state ρ ∈ D (X ), two things happen:

1. Each measurement outcome a ∈ Γ occurs with probability 〈M∗a Ma, ρ〉.
2. Conditioned on the measurement outcome a ∈ Γ occurring, the reduced state of the register

X becomes
MaρM∗a
〈M∗a Ma, ρ〉 .

Let us now observe that non-destructive measurements really do not require new definitions,
but can be formed from a composition of an operation and a measurement as we defined them
initially. One way to do this is to follow the proof of Naimark’s theorem. Specifically, let Y = CΓ

and define an operator A ∈ L (X ,X ⊗Y) as

A = ∑
a∈Γ

Ma ⊗ ea.

We have that
A∗A = ∑

a∈Γ
M∗a Ma = 1X ,

which shows that A is a linear isometry. Therefore, the mapping X 7→ AXA∗ from L (X ) to
L (X ⊗Y) is a channel. Now consider that this operation is followed by a measurement of Y
with respect to the standard basis. Each outcome a ∈ Γ appears with probability

〈1X ⊗ Ea,a, AρA∗〉 = 〈M∗a Ma, ρ〉 ,



and conditioned on the outcome a ∈ Γ appearing, the state of X becomes

TrY [(1X ⊗ Ea,a)AρA∗]
〈1X ⊗ Ea,a, AρA∗〉 =

MaρM∗a
〈M∗a Ma, ρ〉

as required.
Viewing a nondestructive measurement as a channel, along the same lines as in the previous

subsection, we see that it is given by

Φ(X) = ∑
a∈Γ

MaXM∗a ⊗ Ea,a = ∑
a∈Γ

(Ma ⊗ ea)X(Ma ⊗ ea)
∗,

which is easily seen to be completely positive and trace-preserving using the Kraus representa-
tion characterization from the previous lecture.

6.2 Convex combinations of channels

Next we will discuss issues relating to the structure of the set of channels C (X ,Y) for a given
choice of complex Euclidean spaces X and Y .

Let us begin with the simple observation that convex combinations of channels are also chan-
nels: for any choice of channels Φ0, Φ1 ∈ C (X ,Y), and any real number λ ∈ [0, 1], it holds
that

λΦ0 + (1− λ)Φ1 ∈ C (X ,Y) .

One may verify this in different ways, one of which is to consider the Choi-Jamiołkowski repre-
sentation:

J(λΦ0 + (1− λ)Φ1) = λJ(Φ0) + (1− λ)J(Φ1).

Given that Φ0 and Φ1 are completely positive, we have J(Φ0), J(Φ1) ∈ Pos (Y ⊗X ), and because
Pos (Y ⊗X ) is convex it follows that

J(λΦ0 + (1− λ)Φ1) ∈ Pos (Y ⊗X ) .

Thus, λΦ0 + (1− λ)Φ1 is completely positive. The fact that λΦ0 + (1− λ)Φ1 preserves trace is
immediate by linearity. One could also verify the claim that C (X ,Y) is convex somewhat more
directly, by considering the definition of complete positivity.

It is also not difficult to see that the set C (X ,Y) is compact for any choice of complex Eu-
clidean spaces X and Y . This may be verified by again turning to the Choi-Jamiołkowski repre-
sentation. First, we observe that the set

{P ∈ Pos (Y ⊗X ) : Tr(P) = dim(X )}

is compact, by essentially the same reasoning (which we have discussed previously) that shows
the set D (Z) to be compact (for every complex Euclidean space Z). Second, the set

{X ∈ L (Y ⊗X ) : TrY (X) = 1X }

is closed, for it is an affine subspace (in this case given by a translation of the kernel of the partial
trace on Y). The intersection of a compact set and a closed set is compact, so

{P ∈ Pos (Y ⊗X ) : TrY (P) = 1X }

is compact. Continuous mappings map compact sets to compact sets, and the mapping

J−1 : L (Y ⊗X )→ T (X ,Y)
that takes J(Φ) to Φ for each Φ ∈ T (X ,Y) is continuous, so we have that C (X ,Y) is compact.



6.2.1 Choi’s theorem on extremal channels

Let us now consider the extreme points of the set C (X ,Y). These are the channels that cannot
be written as proper convex combinations of distinct channels. The extreme points of C (X ,Y)
can, in some sense, be viewed as being analogous to the pure states of D (X ), but it turns out
that the structure of C (X ,Y) is more complicated than D (X ). A characterization of the extreme
points of this set is given by the following theorem.

Theorem 6.1 (Choi). Let {Aa : a ∈ Σ} ⊂ L (X ,Y) be a linearly independent set of operators and let
Φ ∈ C (X ,Y) be a quantum channel that is given by

Φ(X) = ∑
a∈Σ

AaXA∗a

for all X ∈ L (X ). The channel Φ is an extreme point of the set C (X ,Y) if and only if

{A∗b Aa : (a, b) ∈ Σ× Σ}

is a linearly independent set of operators.

Proof. Let Z = CΣ, and define M ∈ L (Z ,Y ⊗X ) as

M = ∑
a∈Σ

vec(Aa)e∗a .

Given that {Aa : a ∈ Σ} is linearly independent, it holds that ker(M) = {0}. It also holds that

MM∗ = ∑
a∈Σ

vec(Aa) vec(Aa)
∗ = J(Φ).

Assume first that Φ is not an extreme point of C (X ,Y). It follows that there exist channels
Ψ0, Ψ1 ∈ C (X ,Y), with Ψ0 6= Ψ1, such that

Φ =
1
2

Ψ0 +
1
2

Ψ1.

Let P = J(Φ), Q0 = J(Ψ0), and Q1 = J(Ψ1). As Φ, Ψ0, and Ψ1 are channels, one has that
P, Q0, Q1 ∈ Pos (Y ⊗X ) and

TrY (P) = TrY (Q0) = TrY (Q1) = 1X .

Moreover, as 1
2 Q0 ≤ P, it follows that im(Q0) ⊆ im(P) = im(M), and therefore there exists

a positive semidefinite operator R0 ∈ Pos (Z) for which Q0 = MR0M∗. By similar reasoning,
there exists a positive semidefinite operator R1 ∈ Pos (Z) for which Q1 = MR1M∗. Letting
H = R0 − R1, one finds that

0 = TrY (Q0)− TrY (Q1) = TrY (MHM∗) = ∑
a,b∈Σ

H(a, b) (A∗b Aa)
T ,

and therefore
∑

a,b∈Σ
H(a, b)A∗b Aa = 0.

Given that Ψ0 6= Ψ1, it holds that Q0 6= Q1, so R0 6= R1, and thus H 6= 0. It has therefore been
shown that the set

{
A∗b Aa : (a, b) ∈ Σ× Σ

}
is linearly dependent, as required.



Now assume the set
{

A∗b Aa : (a, b) ∈ Σ× Σ
}

is linearly dependent: there exists a nonzero
operator Z ∈ L (Z) such that

∑
a,b∈Σ

Z(a, b)A∗b Aa = 0.

It follows that

∑
a,b∈Σ

Z∗(a, b)A∗b Aa =

(
∑

a,b∈Σ
Z(a, b)A∗b Aa

)∗
= 0

and therefore
∑

a,b∈Σ
H(a, b)A∗b Aa = 0 (6.1)

for both of the choices H = Z + Z∗ and H = iZ − iZ∗. At least one of the operators Z + Z∗

and iZ− iZ∗ must be nonzero when Z is nonzero, so one may conclude that the above equation
(6.1) holds for a nonzero Hermitian operator H ∈ Herm (Z) that is hereafter taken to be fixed.
Given that this equation is invariant under rescaling H, there is no loss of generality in assuming
‖H‖ ≤ 1.

As ‖H‖ ≤ 1 and H is Hermitian, it follows that 1 + H and 1− H are both positive semidef-
inite, and therefore the operators M(1 + H)M∗ and M(1− H)M∗ are positive semidefinite as
well. Letting Ψ0, Ψ1 ∈ T (X ,Y) be the mappings that satisfy

J(Ψ0) = M(1 + H)M∗ and J(Ψ1) = M(1− H)M∗,

one therefore has that Ψ0 and Ψ1 are completely positive. It holds that

TrY (MHM∗) = ∑
a,b∈Σ

H(a, b) (A∗b Aa)
T =

(
∑

a,b∈Σ
H(a, b)A∗b Aa

)T

= 0

and therefore

TrY (J(Ψ0)) = TrY (MM∗) + TrY (MHM∗) = TrY (J(Φ)) = 1X

and
TrY (J(Ψ1)) = TrY (MM∗)− TrY (MHM∗) = TrY (J(Φ)) = 1X .

Thus, Ψ0 and Ψ1 are channels. Finally, given that H 6= 0 and ker(M) = {0} it holds that
J(Ψ0) 6= J(Ψ1), so that Ψ0 6= Ψ1. As

1
2

J(Ψ0) +
1
2

J(Ψ1) = MM∗ = J(Φ),

one has that
Φ =

1
2

Ψ0 +
1
2

Ψ1,

which demonstrates that Φ is not an extreme point of C (X ,Y).



6.2.2 Application of Carathéodory’s theorem to convex combinations of channels

For an arbitrary channel Φ ∈ C (X ,Y), one may always write

Φ = ∑
a∈Γ

p(a)Φa

for some finite set Γ, a probability vector p ∈ RΓ, and {Φa : a ∈ Γ} being a collection of extremal
channels. This is so because C (X ,Y) is convex and compact, and every compact and convex set
is equal to the convex hull of its extreme points (by the Krein-Milman theorem). One natural
question is: how large must Γ be for such an expression to exist? Carathéodory’s theorem, which
you will find stated in the Lecture 2 notes, provides an upper bound.

To explain this bound, let us assume X = CΣ and Y = CΓ. As explained in Lecture 1, we may
view the space of Hermitian operators Herm (Y ⊗X ) as a real vector space indexed by (Γ× Σ)2,
and therefore having dimension |Σ|2 |Γ|2.

Now, the Choi-Jamiołkowski representation J(Φ) of any channel Φ ∈ C (X ,Y) is an element
of Pos (Y ⊗X ), and is therefore an element of Herm (Y ⊗X ). Taking

A = {J(Ψ) : Ψ ∈ C (X ,Y) is extremal} ⊂ Herm (Y ⊗X ) ,

and applying Carathéodory’s theorem, we have that every element J(Φ) ∈ conv(A) can be
written as

J(Φ) =
m

∑
j=1

pj J(Ψj)

for some probability vector p = (p1, . . . , pm) and some choice of extremal channels Ψ1, . . . , Ψm,
for m = |Σ|2 |Γ|2 + 1. Equivalently, every channel Φ ∈ C (X ,Y) can be written as a convex
combination of no more than m = |Σ|2 |Γ|2 + 1 extremal channels.

This bound may, in fact, be improved to m = |Σ|2 |Γ|2 − |Σ|2 + 1 by observing that the trace-
preserving property of channels reduces the dimension of the smallest (affine) subspace in which
they may be contained.

6.2.3 Mixed unitary channels

Suppose that X is a complex Euclidean space and U ∈ U (X ) is a unitary operator. The mapping
Ψ ∈ T (X ) defined by

Ψ(X) = UXU∗

for all X ∈ L (X ) is clearly a channel, and any such channel is called a unitary channel. Any
channel Φ ∈ C (X ) that can be written as a convex combination of unitary channels is said to
be a mixed unitary channel. (The term random unitary channel is more common, but it is easily
confused with a different notion whereby one chooses a unitary channel randomly according to
some distribution or measure.)

Again let us suppose that X = CΣ. One may perform a similar calculation to the one above to
find that every mixed unitary channel can be written as a convex combination of |Σ|4− 2 |Σ|2 + 2
unitary channels. The difference between this expression and the one from above comes from
considering additional linear constraints satisfied by unitary channels—namely that they are
unital in addition to being trace-preserving.



6.3 Discrete Weyl operators and teleportation

Now we will switch gears and discuss something different: the collection of so-called discrete
Weyl operators and some examples of channels based on them. They also allow us to discuss a
straightforward generalization of quantum teleportation to high-dimensional systems.

6.3.1 Definition of discrete Weyl operators

For any positive integer n, we define

Zn = {0, 1, . . . , n− 1},

and view this set as a ring with respect to addition and multiplication defined modulo n. Let us
also define

ωn = exp(2πi/n)

to be a principal n-th root of unity, which will typically be denoted ω rather than ωn when n has
been fixed or is clear from the context.

Now, for a fixed choice of n, let X = CZn , and define two unitary operators X, Z ∈ U (X ) as
follows:

X = ∑
a∈Zn

Ea+1,a and Z = ∑
a∈Zn

ωaEa,a.

Here, and throughout this section, the expression a + 1 refers to addition in Zn, and similar for
other arithmetic expressions involving elements of Zn. Finally, for any choice of (a, b) ∈ Z2

n we
define

Wa,b = XaZb.

Such operators are known as discrete Weyl operators (and also as generalized Pauli operators).
Let us note a few basic facts about the collection

{Wa,b : (a, b) ∈ Z2
n}. (6.2)

First, we have that each Wa,b is unitary, given that X and Z are obviously unitary. Next, it is
straightforward to show that

Tr(Wa,b) =

{
n if a = b = 0
0 otherwise.

This implies that the collection (6.2) forms an orthogonal basis for L (X ), because

〈Wa,b, Wc,d〉 = Tr
(

Z−bX−aXcZd
)
= Tr

(
Xc−aZd−b

)
=

{
n if (a, b) = (c, d)
0 otherwise.

Finally, we note the commutation relation

ZX = ωXZ,

which (for instance) implies

Wa,bWc,d = (XaZb)(XcZd) = ωbcXa+cZb+d = ωbc−ad(XcZd)(XaZb) = ωbc−adWc,dWa,b.



6.3.2 Dephasing and depolarizing channels

Two simple examples of mixed unitary channels, where the corresponding unitary operators are
chosen to be discrete Weyl operators, are as follows:

∆(A) =
1
n ∑

a∈Zn

W0,a AW∗0,a and Ω(A) =
1
n2 ∑

a,b∈Zn

Wa,b AW∗a,b.

We have already encountered ∆ in this lecture: it is the completely dephasing channel that
zeros out off-diagonal entries and leaves the diagonal alone. To see that this is so, we may
compute the action of this channel on the standard basis of L (X ):

∆(Ec,d) =
1
n ∑

a∈Zn

W0,aEc,dW∗0,a =

(
1
n ∑

a∈Zn

ωa(c−d)

)
Ec,d =

{
Ec,d if c = d
0 if c 6= d.

Alternately we may compute the action on the basis of discrete Weyl operators:

∆(Wc,d) =
1
n ∑

a∈Zn

W0,aWc,dW∗0,a =

(
1
n ∑

a∈Zn

ωac

)
Wc,d =

{
Wc,d if c = 0
0 if c 6= 0.

The discrete Weyl operators of the form Wc,d for c = 0 span precisely the diagonal operators, so
we see that this expression is consistent with the one involving the standard basis.

The channel Ω is known as the completely depolarizing channel, or the maximally noisy channel.
We have

Ω(Wc,d) =
1
n2 ∑

a,b∈Zn

Wa,bWc,dW∗a,b =

(
1
n2 ∑

a,b∈Zn

ωbc−ad

)
Wc,d =

{
Wc,d if (c, d) = (0, 0)
0 otherwise.

The output is always a scalar multiple of W0,0 = 1. We may alternately write

Ω(A) =
Tr(A)

n
1.

For every ρ ∈ D (X ) we therefore have Ω(ρ) = 1/n, which is the maximally mixed state: nothing
but noise comes out of this channel.

6.3.3 Weyl covariant channels

The channels ∆ and Ω above exhibit an interesting phenomenon, which is that the discrete Weyl
operators are eigenvectors of them, in the sense that ∆(Wa,b) = λa,bWa,b for some choice of
{λa,b} ⊂ C (and likewise for Ω). This property holds for all channels given by convex combi-
nations of unitary channels corresponding to the discrete Weyl operators. In general, channels
of this form are called Weyl covariant channels. This can be demonstrated using the commutation
relations noted above.

In greater detail, let us take M ∈ L
(
CZn

)
to be any operator, and consider the mapping

Φ(A) = ∑
a,b∈Zn

M(a, b)Wa,b AW∗a,b.



We have

Φ(Wc,d) = ∑
a,b∈Zn

M(a, b)Wa,bWc,dW∗a,b =

(
∑

a,b∈Zn

M(a, b)ωbc−ad

)
Wc,d = N(c, d)Wc,d

for
N(c, d) = ∑

a,b∈Zn

M(a, b)ωbc−ad.

Alternately, we may write
N = VMTV∗,

where
V = ∑

b,c∈Zn

ωbcEc,b

is the operator typically associated with the discrete Fourier transform.

6.3.4 Teleportation

Suppose that X, YA, and YB are registers, all having classical state set Zn for some arbitrary
choice of a positive integer n (such as n = 8, 675, 309, which is known as Jenny’s number). Alice is
holding X and YA, while Bob has YB. The pair (YA,YB) was long ago prepared in the pure state

1√
n

vec(1) =
1√
n ∑

a∈Zn

ea ⊗ ea,

while X was recently acquired by Alice. Alice wishes to teleport the state of X to Bob by sending
him only classical information. To do this, Alice measures the pair (X,YA) with respect to the
generalized Bell basis {

1√
n

vec(Wa,b) : (a, b) ∈ Zn ×Zn

}
. (6.3)

She transmits to Bob whatever result (a, b) ∈ Zn ×Zn she obtains from her measurement, and
Bob “corrects” YB by applying to it the unitary channel

σ 7→Wa,bσW∗a,b.

We may express this entire procedure as a channel from X to YB, where the preparation of
(YA,YB) is included in the description so that it makes sense to view YB as having been created
in the procedure. This channel is given by

Φ(ρ) =
1
n ∑

(a,b)∈Zn×Zn

(vec(Wa,b)
∗ ⊗Wa,b)

(
ρ⊗ 1

n
vec(1) vec(1)∗

) (
vec(Wa,b)⊗W∗a,b

)
.

To simplify this expression, it helps to note that

vec(1) vec(1)∗ =
1
n ∑

c,d
Wc,d ⊗Wc,d.

http://www.youtube.com/watch?v=axLRUszuu9I


We find that

Φ(We, f ) =
1
n3 ∑

a,b,c,d∈Zn

(vec(Wa,b)
∗ ⊗Wa,b)

(
We, f ⊗Wc,d ⊗Wc,d

) (
vec(Wa,b)⊗W∗a,b

)
=

1
n3 ∑

a,b,c,d∈Zn

Tr
(
W∗a,bWe, f Wa,bW∗c,d

)
Wa,bWc,dW∗a,b

=
1
n3 ∑

a,b,c,d∈Zn

〈
Wc,d, We, f

〉
Wc,d

=
1
n ∑

c,d∈Zn

〈
Wc,d, We, f

〉
Wc,d

= We, f

for all e, f ∈ Zn. Thus, Φ is the identity channel—so the teleportation has worked as expected.
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