
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 4: Purifications and fidelity

Throughout this lecture we will be discussing pairs of registers of the form (X,Y), and the
relationships among the states of X, Y, and (X,Y).

The situation generalizes to collections of three or more registers, provided we are interested
in bipartitions. For instance, if we have a collection of registers (X1, . . . ,Xn), and we wish to
consider the state of a subset of these registers in relation to the state of the whole, we can
effectively group the registers into two disjoint collections and relabel them as X and Y to apply
the conclusions to be drawn. Other, multipartite relationships can become more complicated,
such as relationships between states of (X1,X2), (X2,X3), and (X1,X2,X3), but this is not the topic
of this lecture.

4.1 Reductions, extensions, and purifications

Suppose that a pair of registers (X,Y) has the state ρ ∈ D (X ⊗Y). The states of X and Y
individually are then given by

ρX = TrY (ρ) and ρY = TrX (ρ).

You could regard this as a definition, but these are the only choices that are consistent with the in-
terpretation that disregarding Y should have no influence on the outcomes of any measurements
performed on X alone, and likewise for X and Y reversed. The states ρX and ρY are sometimes
called the reduced states of X and Y, or the reductions of ρ to X and Y.

We may also go in the other direction. If a state σ ∈ D (X ) of X is given, we may consider the
possible states ρ ∈ D (X ⊗Y) that are consistent with σ on X, meaning that σ = TrY (ρ). Unless
Y is a trivial register with just a single classical state, there are always multiple choices for ρ that
are consistent with σ. Any such state ρ is said to be an extension of σ. For instance, ρ = σ⊗ ξ, for
any density operator ξ ∈ D (Y), is always an extension of σ, because

TrY (σ⊗ ξ) = σ⊗ Tr(ξ) = σ.

If σ is pure, this is the only possible form for an extension. This is a mathematically simple
statement, but it is nevertheless important at an intuitive level: it says that a register in a pure
state cannot be correlated with any other registers.

A special type of extension is one in which the state of (X,Y) is pure: if ρ = uu∗ ∈ D (X ⊗Y)
is a pure state for which

TrY (uu∗) = σ,

it is said that ρ is a purification of σ. One also often refers to the vector u, as opposed to the
operator uu∗, as being a purification of σ.

The notions of reductions, extensions, and purifications are easily extended to arbitrary posi-
tive semidefinite operators, as opposed to just density operators. For instance, if P ∈ Pos (X ) is



a positive semidefinite operator and u ∈ X ⊗Y is a vector for which

P = TrY (uu∗),

it is said that u (or uu∗) is a purification of P.
For example suppose X = CΣ and Y = CΣ, for some arbitrary (finite and nonempty) set Σ.

The vector
u = ∑

a∈Σ
ea ⊗ ea

satisfies the equality
1X = TrY (uu∗),

and so u is a purification of 1X .

4.2 Existence and properties of purifications

A study of the properties of purifications is greatly simplified by the following observation. The
vec mapping defined in Lecture 2 is a one-to-one and onto linear correspondence between X ⊗Y
and L (Y ,X ); and for any choice of u ∈ X ⊗ Y and A ∈ L (Y ,X ) satisfying u = vec(A) it holds
that

TrY (uu∗) = TrY (vec(A) vec(A)∗) = AA∗.

Therefore, for every choice of complex Euclidean spaces X and Y , and for any given operator
P ∈ Pos (X ), the following two properties are equivalent:

1. There exists a purification u ∈ X ⊗Y of P.

2. There exists an operator A ∈ L (Y ,X ) such that P = AA∗.

The following theorem, whose proof is based on this observation, establishes necessary and
sufficient conditions for the existence of a purification of a given operator.

Theorem 4.1. Let X and Y be complex Euclidean spaces, and let P ∈ Pos (X ) be a positive semidefinite
operator. There exists a purification u ∈ X ⊗Y of P if and only if dim(Y) ≥ rank(P).

Proof. As discussed above, the existence of a purification u ∈ X ⊗ Y of P is equivalent to the
existence of an operator A ∈ L (Y ,X ) satisfying P = AA∗. Under the assumption that such an
operator A exists, it is clear that

rank(P) = rank(AA∗) = rank(A) ≤ dim(Y)

as claimed.
Conversely, under the assumption that dim(Y) ≥ rank(P), there must exist operator B ∈

L (Y ,X ) for which BB∗ = Πim(P) (the projection onto the image of P). To obtain such an operator
B, let r = rank(P), use the spectral theorem to write

P =
r

∑
j=1

λj(P)xjx∗j ,

and let

B =
r

∑
j=1

xjy∗j

for any choice of an orthonormal set {y1, . . . , yr} ⊂ Y . Now, for A =
√

PB it holds that AA∗ = P
as required.



Corollary 4.2. Let X and Y be complex Euclidean spaces such that dim(Y) ≥ dim(X ). For every
choice of P ∈ Pos (X ), there exists a purification u ∈ X ⊗Y of P.

Having established a simple condition under which purifications exist, the next step is to
prove the following important relationship among all purifications of a given operator within a
given space.

Theorem 4.3 (Unitary equivalence of purifications). Let X and Y be complex Euclidean spaces, and
suppose that vectors u, v ∈ X ⊗Y satisfy

TrY (uu∗) = TrY (vv∗).

There exists a unitary operator U ∈ U (Y) such that v = (1X ⊗U)u.

Proof. Let P ∈ Pos (X ) satisfy TrY (uu∗) = P = TrY (vv∗), and let A, B ∈ L (Y ,X ) be the unique
operators satisfying u = vec(A) and v = vec(B). It therefore holds that AA∗ = P = BB∗. Letting
r = rank(P), it follows that rank(A) = r = rank(B).

Now, let {x1, . . . , xr} ⊂ X be any orthonormal collection of eigenvectors of P with corre-
sponding eigenvalues λ1(P), . . . , λr(P). By the singular value theorem, it is possible to write

A =
r

∑
j=1

√
λj(P)xjy∗j and B =

r

∑
j=1

√
λj(P)xjz∗j

for some choice of orthonormal sets {y1, . . . , yr} and {z1, . . . , zr}.
Finally, let V ∈ U (Y) be any unitary operator satisfying Vzj = yj for every j = 1, . . . , r. It

follows that AV = B, and by taking U = VT one has

(1X ⊗U)u = (1X ⊗VT) vec(A) = vec(AV) = vec(B) = v

as required.

Theorem 4.3 will have significant value throughout the course, as a tool for proving a variety
of results. It is also important at an intuitive level that the following example aims to illustrate.

Example 4.4. Suppose X and Y are distinct registers, and that Alice holds X and Bob holds Y in
separate locations. Assume moreover that the pair (X,Y) is in a pure state uu∗.

Now imagine that Bob wishes to transform the state of (X,Y) so that it is in a different pure
state vv∗. Assuming that Bob is able to do this without any interaction with Alice, it must hold
that

TrY (uu∗) = TrY (vv∗). (4.1)

This equation expresses the assumption that Bob does not touch X.
Theorem 4.3 implies that not only is (4.1) a necessary condition for Bob to transform uu∗ into

vv∗, but in fact it is sufficient. In particular, there must exist a unitary operator U ∈ U (Y) for
which v = (1X ⊗U)u, and Bob can implement the transformation from uu∗ into vv∗ by applying
the unitary operation described by U to his register Y.

4.3 The fidelity function

There are different ways that one may quantify the similarity or difference between density
operators. One way that relates closely to the notion of purifications is the fidelity between states.
It is used extensively in the theory of quantum information.



4.3.1 Definition of the fidelity function

Given positive semidefinite operators P, Q ∈ Pos (X ), we define the fidelity between P and Q as

F(P, Q) =
∥∥∥√P

√
Q
∥∥∥

1
.

Equivalently,

F(P, Q) = Tr
√√

PQ
√

P.

Similar to purifications, it is common to see the fidelity defined only for density operators as
opposed to arbitrary positive semidefinite operators. It is, however, useful to extend the definition
to all positive semidefinite operators as we have done, and it incurs little or no additional effort.

4.3.2 Basic properties of the fidelity

There are many interesting properties of the fidelity function. Let us begin with a few simple
ones. First, the fidelity is symmetric: F(P, Q) = F(Q, P) for all P, Q ∈ Pos (X ). This is clear from
the definition, given that ‖A‖1 = ‖A∗‖1 for all operators A.

Next, suppose that u ∈ X is a vector and Q ∈ Pos (X ) is a positive semidefinite operator. It
follows from the observation that

√
uu∗ = uu∗

‖u‖ whenever u 6= 0 that

F (uu∗, Q) =
√

u∗Qu.

In particular, F (uu∗, vv∗) = |〈u, v〉| for any choice of vectors u, v ∈ X .
One nice property of the fidelity that we will utilize several times is that it is multiplicative

with respect to tensor products. This fact is stated in the following proposition (which can be
easily extended from tensor products of two operators to any finite number of operators by
induction).

Proposition 4.5. Let P1, Q1 ∈ Pos (X1) and P2, Q2 ∈ Pos (X2) be positive semidefinite operators. It
holds that

F(P1 ⊗ P2, Q1 ⊗Q2) = F(P1, Q1) F(P2, Q2).

Proof. We have

F(P1 ⊗ P2, Q1 ⊗Q2) =
∥∥∥√P1 ⊗ P2

√
Q1 ⊗Q2

∥∥∥
1
=
∥∥∥(√P1 ⊗

√
P2

) (√
Q1 ⊗

√
Q2

)∥∥∥
1

=
∥∥∥√P1

√
Q1 ⊗

√
P2
√

Q2

∥∥∥
1
=
∥∥∥√P1

√
Q1

∥∥∥
1

∥∥∥√P2
√

Q2

∥∥∥
1
= F(P1, Q1) F(P2, Q2)

as claimed.

4.3.3 Uhlmann’s theorem

Next we will prove a fundamentally important theorem about the fidelity, known as Uhlmann’s
theorem, which relates the fidelity to the notion of purifications.

Theorem 4.6 (Uhlmann’s theorem). Let X and Y be complex Euclidean spaces, let P, Q ∈ Pos (X ) be
positive semidefinite operators, both having rank at most dim(Y), and let u ∈ X ⊗Y be any purification
of P. It holds that

F(P, Q) = max {|〈u, v〉| : v ∈ X ⊗Y , TrY (vv∗) = Q} .



Proof. Given that the rank of both P and Q is at most dim(Y), there must exist operators A, B ∈
L (X ,Y) for which A∗A = Πim(P) and B∗B = Πim(Q). The equations

TrY
(

vec
(√

PA∗
)

vec
(√

PA∗
)∗)

=
√

PA∗A
√

P = P

TrY
(

vec
(√

QB∗
)

vec
(√

QB∗
)∗)

=
√

QB∗B
√

Q = Q

follow, demonstrating that

vec
(√

PA∗
)

and vec
(√

QB∗
)

are purifications of P and Q, respectively. By Theorem 4.3 it follows that every choice of a
purification u ∈ X ⊗Y of P must take the form

u = (1X ⊗U) vec
(√

PA∗
)
= vec

(√
PA∗UT

)
,

for some unitary operator U ∈ U (Y), and likewise every purification v ∈ X ⊗Y of Q must take
the form

v = (1X ⊗V) vec
(√

QB∗
)
= vec

(√
QB∗VT

)
for some unitary operator V ∈ U (Y).

The maximization in the statement of the theorem is therefore equivalent to

max
V∈U(Y)

∣∣∣〈vec
(√

PA∗UT

)
, vec

(√
QB∗VT

)〉∣∣∣ ,

which may alternately be written as

max
V∈U(Y)

∣∣∣〈UTV, A
√

P
√

QB∗
〉∣∣∣ (4.2)

for some choice of U ∈ U (Y). As V ∈ U (Y) ranges over all unitary operators, so too does UTV,
and therefore the quantity represented by equation (4.2) is given by∥∥∥A

√
P
√

QB∗
∥∥∥

1
.

Finally, given that A∗A and B∗B are projection operators, A and B must both have spectral
norm at most 1. It therefore holds that∥∥∥√P

√
Q
∥∥∥

1
=
∥∥∥A∗A

√
P
√

QB∗B
∥∥∥

1
≤
∥∥∥A
√

P
√

QB∗
∥∥∥

1
≤
∥∥∥√P

√
Q
∥∥∥

1

so that ∥∥∥A
√

P
√

QB∗
∥∥∥

1
=
∥∥∥√P

√
Q
∥∥∥

1
= F(P, Q).

The equality in the statement of the theorem therefore holds.

Various properties of the fidelity follow from Uhlmann’s theorem. For example, it is clear
from the theorem that 0 ≤ F(ρ, ξ) ≤ 1 for density operators ρ and ξ. Moreover F(ρ, ξ) = 1 if and
only if ρ = ξ. It is also evident (from the definition) that F(ρ, ξ) = 0 if and only if

√
ρ
√

ξ = 0,
which is equivalent to ρξ = 0 (i.e., to ρ and ξ having orthogonal images).

Another property of the fidelity that follows from Uhlmann’s theorem is as follows.



Proposition 4.7. Let P1, . . . , Pk, Q1, . . . , Qk ∈ Pos (X ) be positive semidefinite operators. It holds that

F

(
k

∑
i=1

Pi,
k

∑
i=1

Qi

)
≥

k

∑
i=1

F (Pi, Qi) .

Proof. Let Y be a complex Euclidean space having dimension at least that of X , and choose
vectors u1, . . . , uk, v1, . . . , vk ∈ X ⊗ Y satisfying TrY (uiu∗i ) = Pi, TrY (viv∗i ) = Qi, and 〈ui, vi〉 =
F(Pi, Qi) for each i = 1, . . . , k. Such vectors exist by Uhlmann’s theorem. Let Z = Ck and define
u, v ∈ X ⊗Y ⊗Z as

u =
k

∑
i=1

ui ⊗ ei and v =
k

∑
i=1

vi ⊗ ei.

We have

TrY⊗Z (uu∗) =
k

∑
i=1

Pi and TrY⊗Z (vv∗) =
k

∑
i=1

Qi.

Thus, again using Uhlmann’s theorem, we have

F

(
k

∑
i=1

Pi,
k

∑
i=1

Qi

)
≥ |〈u, v〉| =

k

∑
i=1

F (Pi, Qi)

as required.

It follows from this proposition is that the fidelity function is concave in the first argument:

F(λρ1 + (1− λ)ρ2, ξ) ≥ λ F(ρ1, ξ) + (1− λ) F(ρ2, ξ)

for all ρ1, ρ2, ξ ∈ D (X ) and λ ∈ [0, 1], and by symmetry it is concave in the second argument as
well. In fact, the fidelity is jointly concave:

F(λρ1 + (1− λ)ρ2, λξ1 + (1− λ)ξ2) ≥ λ F(ρ1, ξ1) + (1− λ) F(ρ2, ξ2).

for all ρ1, ρ2, ξ1, ξ2 ∈ D (X ) and λ ∈ [0, 1].

4.3.4 Alberti’s theorem

A different characterization of the fidelity function is given by Alberti’s theorem, which is as
follows.

Theorem 4.8 (Alberti). Let X be a complex Euclidean space and let P, Q ∈ Pos (X ) be positive semidef-
inite operators. It holds that

(F(P, Q))2 = inf
R∈Pd(X )

〈R, P〉 〈R−1, Q〉.

When we study semidefinite programming later in the course, we will see that this theorem
is in fact closely related to Uhlmann’s theorem through semidefinite programming duality. For
now we will make due with a different proof. It is more complicated, but it has the value that
it illustrates some useful tricks from matrix analysis. To prove the theorem, it is helpful to start
first with the special case that P = Q, which is represented by the following lemma.



Lemma 4.9. Let P ∈ Pos (X ). It holds that

inf
R∈Pd(X )

〈R, P〉 〈R−1, P〉 = (Tr(P))2.

Proof. It is clear that
inf

R∈Pd(X )
〈R, P〉 〈R−1, P〉 ≤ (Tr(P))2 ,

given that R = 1 is positive definite. To establish the reverse inequality, it suffices to prove that

〈R, P〉 〈R−1, P〉 ≥ (Tr(P))2

for any choice of R ∈ Pd (X ). This will follow from the simple observation that, for any choice
of positive real numbers α and β, we have α2 + β2 ≥ 2αβ and therefore αβ−1 + βα−1 ≥ 2. With
this fact in mind, consider a spectral decomposition

R =
n

∑
i=1

λiuiu∗i .

We have

〈R, P〉 〈R−1, P〉 = ∑
1≤i,j≤n

λiλ
−1
j (u∗i Pui)(u∗j Puj)

= ∑
1≤i≤n

(u∗i Pui)
2 + ∑

1≤i<j≤n
(λiλ

−1
j + λjλ

−1
i )(u∗i Pui)(u∗j Puj)

≥ ∑
1≤i≤n

(u∗i Pui)
2 + 2 ∑

1≤i<j≤n
(u∗i Pui)(u∗j Puj)

= (Tr(P))2

as required.

Proof of Theorem 4.8. We will first prove the theorem for P and Q positive definite. Let us define
S ∈ Pd (X ) to be

S =
(√

PQ
√

P
)−1/4√

PR
√

P
(√

PQ
√

P
)−1/4

.

Notice that as R ranges over all positive definite operators, so too does S. We have〈
S,
(√

PQ
√

P
)1/2

〉
= 〈R, P〉 ,〈

S−1,
(√

PQ
√

P
)1/2

〉
= 〈R−1, Q〉.

Therefore, by Lemma 4.9, we have

inf
R∈Pd(X )

〈R, P〉 〈R−1, Q〉 = inf
S∈Pd(X )

〈
S,
(√

PQ
√

P
)1/2

〉〈
S−1,

(√
PQ
√

P
)1/2

〉
=

(
Tr
√√

PQ
√

P
)2

= (F(P, Q))2 .



To prove the general case, let us first note that, for any choice of R ∈ Pd (X ) and ε > 0, we have

〈R, P〉 〈R−1, Q〉 ≤ 〈R, P + ε1〉 〈R−1, Q + ε1〉.

Thus,
inf

R∈Pd(X )
〈R, P〉 〈R−1, Q〉 ≤ (F(P + ε1, Q + ε1))2

for all ε > 0. As
lim

ε→0+
F(P + ε1, Q + ε1) = F(P, Q)

we have
inf

R∈Pd(X )
〈R, P〉 〈R−1, Q〉 ≤ (F(P, Q))2 .

On the other hand, for any choice of R ∈ Pd (X ) we have

〈R, P + ε1〉 〈R−1, Q + ε1〉 ≥ (F(P + ε1, Q + ε1))2 ≥ (F(P, Q))2

for all ε > 0, and therefore
〈R, P〉 〈R−1, Q〉 ≥ (F(P, Q))2 .

As this holds for all R ∈ Pd (X ) we have

inf
R∈Pd(X )

〈R, P〉 〈R−1, Q〉 ≥ (F(P, Q))2 ,

which completes the proof.

4.4 The Fuchs–van de Graaf inequalities

We will now state and prove the Fuchs–van de Graaf inequalities, which establish a close relation-
ship between the trace norm of the difference between two density operators and their fidelity.
The inequalities are as stated in the following theorem.

Theorem 4.10 (Fuchs–van de Graaf). Let X be a complex Euclidean space and assume that ρ, ξ ∈ D (X )
are density operators on X . It holds that

1− 1
2
‖ρ− ξ‖1 ≤ F(ρ, ξ) ≤

√
1− 1

4
‖ρ− ξ‖2

1.

To prove this theorem we first need the following lemma relating the trace norm and Frobe-
nius norm. Once we have it in hand, the theorem will be easy to prove.

Lemma 4.11. Let X be a complex Euclidean space and let P, Q ∈ Pos (X ) be positive semidefinite
operators on X . It holds that

‖P−Q‖1 ≥
∥∥∥√P−

√
Q
∥∥∥2

2
.

Proof. Let
√

P−
√

Q =
n

∑
i=1

λiuiu∗i



be a spectral decomposition of
√

P−
√

Q. Given that
√

P−
√

Q is Hermitian, it follows that

n

∑
i=1
|λi |2 =

∥∥∥√P−
√

Q
∥∥∥2

2
.

Now, define

U =
n

∑
i=1

sign(λi)uiu∗i

where

sign(λ) =
{

1 if λ ≥ 0
−1 if λ < 0

for every real number λ. It follows that

U
(√

P−
√

Q
)
=
(√

P−
√

Q
)

U =
n

∑
i=1
|λi | uiu∗i =

∣∣∣√P−
√

Q
∣∣∣ .

Using the operator identity

A2 − B2 =
1
2
((A− B)(A + B) + (A + B)(A− B)),

along with the fact that U is unitary, we have

‖P−Q‖1 ≥ |Tr ((P−Q)U)|

=

∣∣∣∣12 Tr
(
(
√

P−
√

Q)(
√

P +
√

Q)U
)
+

1
2

Tr
(
(
√

P +
√

Q)(
√

P−
√

Q)U
)∣∣∣∣

= Tr
(∣∣∣√P−

√
Q
∣∣∣ (√P +

√
Q
))

.

Now, by the triangle inequality (for real numbers), we have that

u∗i
(√

P +
√

Q
)

ui ≥
∣∣∣u∗i√Pui − u∗i

√
Qui

∣∣∣ = |λi |

for every i = 1, . . . , n. Thus

Tr
(∣∣∣√P−

√
Q
∣∣∣ (√P +

√
Q
))

=
n

∑
i=1
|λi | u∗i

(√
P +

√
Q
)

ui ≥
n

∑
i=1
|λi |2 =

∥∥∥√P−
√

Q
∥∥∥2

2

as required.

Proof of Theorem 4.10. The operators ρ and ξ have unit trace, and therefore∥∥∥√ρ−
√

ξ
∥∥∥2

2
= Tr

(√
ρ−

√
ξ
)2

= 2− 2 Tr
(√

ρ
√

ξ
)
≥ 2− 2 F(ρ, ξ).

The first inequality therefore follows from Lemma 4.11.
To prove the second inequality, let Y be a complex Euclidean space with dim(Y) = dim(X ),

and let u, v ∈ X ⊗ Y satisfy TrY (uu∗) = ρ, TrY (vv∗) = ξ, and F(ρ, ξ) = |〈u, v〉|. Such vectors
exist as a consequence of Uhlmann’s theorem. By the monotonicity of the trace norm we have

‖ρ− ξ‖1 ≤ ‖uu∗ − vv∗‖1 = 2
√

1− |〈u, v〉|2 = 2
√

1− F(ρ, ξ)2,



and therefore

F(ρ, ξ) ≤
√

1− 1
4
‖ρ− ξ‖2

1

as required.
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