
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 2: Mathematical preliminaries (part 2)

This lecture represents the second half of the discussion that we started in the previous lecture
concerning basic mathematical concepts and tools used throughout the course.

2.1 The singular-value theorem

The spectral theorem, discussed in the previous lecture, is a valuable tool in quantum information
theory. The fact that it is limited to normal operators can, however, restrict its applicability.

The singular value theorem, which we will now discuss, is closely related to the spectral theo-
rem, but holds for arbitrary operators—even those of the form A ∈ L (X ,Y) for different spaces
X and Y . Like the spectral theorem, we will find that the singular value decomposition is an
indispensable tool in quantum information theory. Let us begin with a statement of the theorem.

Theorem 2.1 (Singular Value Theorem). Let X and Y be complex Euclidean spaces, let A ∈ L (X ,Y)
be a nonzero operator, and let r = rank(A). There exist positive real numbers s1, . . . , sr and orthonormal
sets {x1, . . . , xr} ⊂ X and {y1, . . . , yr} ⊂ Y such that

A =
r

∑
j=1

sjyjx∗j . (2.1)

An expression of a given matrix A in the form of (2.1) is said to be a singular value decomposition
of A. The numbers s1, . . . , sr are called singular values and the vectors x1, . . . , xr and y1, . . . , yr are
called right and left singular vectors, respectively.

The singular values s1, . . . , sr of an operator A are uniquely determined, up to their ordering.
Hereafter we will assume, without loss of generality, that the singular values are ordered from
largest to smallest: s1 ≥ · · · ≥ sr. When it is necessary to indicate the dependence of these
singular values on A, we denote them s1(A), . . . , sr(A). Although technically speaking 0 is not
usually considered a singular value of any operator, it will be convenient to also define sk(A) = 0
for k > rank(A). The notation s(A) is used to refer to the vector of singular values s(A) =
(s1(A), . . . , sr(A)), or to an extension of this vector s(A) = (s1(A), . . . , sk(A)) for k > r when it is
convenient to view it as an element of Rk for k > rank(A).

There is a close relationship between singular value decompositions of an operator A and
spectral decompositions of the operators A∗A and AA∗. In particular, it will necessarily hold
that

sk(A) =
√

λk(AA∗) =
√

λk(A∗A) (2.2)

for 1 ≤ k ≤ rank(A), and moreover the right singular vectors of A will be eigenvectors of A∗A
and the left singular vectors of A will be eigenvectors of AA∗. One is free, in fact, to choose
the left singular vectors of A to be any orthonormal collection of eigenvectors of AA∗ for which
the corresponding eigenvalues are nonzero—and once this is done the right singular vectors
will be uniquely determined. Alternately, the right singular vectors of A may be chosen to be



any orthonormal collection of eigenvectors of A∗A for which the corresponding eigenvalues are
nonzero, which uniquely determines the left singular vectors.

In the case that Y = X and A is a normal operator, it is essentially trivial to derive a singular
value decomposition from a spectral decomposition. In particular, suppose that

A =
n

∑
j=1

λjxjx∗j

is a spectral decomposition of A, and assume that we have chosen to label the eigenvalues of A
in such a way that λj 6= 0 for 1 ≤ j ≤ r = rank(A). A singular value decomposition of the form
(2.1) is obtained by setting

sj =
∣∣λj
∣∣ and yj =

λj∣∣λj
∣∣ xj

for 1 ≤ j ≤ r. Note that this shows, for normal operators, that the singular values are simply the
absolute values of the nonzero eigenvalues.

2.1.1 The Moore-Penrose pseudo-inverse

Later in the course we will occasionally refer to the Moore-Penrose pseudo-inverse of an oper-
ator, which is closely related to its singular value decompositions. For any given operator
A ∈ L (X ,Y), we define the Moore-Penrose pseudo-inverse of A, denoted A+ ∈ L (Y ,X ), as
the unique operator satisfying these properties:

1. AA+A = A,

2. A+AA+ = A+, and

3. AA+ and A+A are both Hermitian.

It is clear that there is at least one such choice of A+, for if

A =
r

∑
j=1

sjyjx∗j

is a singular value decomposition of A, then

A+ =
r

∑
j=1

1
sj

xjy∗j

satisfies the three properties above.
The fact that A+ is uniquely determined by the above equations is easily verified, for suppose

that X, Y ∈ L (Y ,X ) both satisfy the above properties:

1. AXA = A = AYA,

2. XAX = X and YAY = Y, and

3. AX, XA, AY, and YA are all Hermitian.

Using these properties, we observe that

X = XAX = (XA)∗X = A∗X∗X = (AYA)∗X∗X = A∗Y∗A∗X∗X
= (YA)∗(XA)∗X = YAXAX = YAX = YAYAX = Y(AY)∗(AX)∗

= YY∗A∗X∗A∗ = YY∗(AXA)∗ = YY∗A∗ = Y(AY)∗ = YAY = Y,

which shows that X = Y.



2.2 Linear mappings on operator algebras

Linear mappings of the form
Φ : L (X )→ L (Y) ,

where X and Y are complex Euclidean spaces, play an important role in the theory of quantum
information. The set of all such mappings is sometimes denoted T (X ,Y), or T (X ) when X = Y ,
and is itself a linear space when addition of mappings and scalar multiplication are defined in
the straightforward way:

1. Addition: given Φ, Ψ ∈ T (X ,Y), the mapping Φ + Ψ ∈ T (X ,Y) is defined by

(Φ + Ψ)(A) = Φ(A) + Ψ(A)

for all A ∈ L (X ).

2. Scalar multiplication: given Φ ∈ T (X ,Y) and α ∈ C, the mapping αΦ ∈ T (X ,Y) is defined
by

(αΦ)(A) = α(Φ(A))

for all A ∈ L (X ).

For a given mapping Φ ∈ T (X ,Y), the adjoint of Φ is defined to be the unique mapping
Φ∗ ∈ T (Y ,X ) that satisfies

〈Φ∗(B), A〉 = 〈B, Φ(A)〉

for all A ∈ L (X ) and B ∈ L (Y).
The transpose

T : L (X )→ L (X ) : A 7→ AT

is a simple example of a mapping of this type, as is the trace

Tr : L (X )→ C : A 7→ Tr(A),

provided we make the identification L (C) = C.

2.2.1 Remark on tensor products of operators and mappings

Tensor products of operators can be defined in concrete terms using the same sort of Kronecker
product construction that we considered for vectors, as well as in more abstract terms connected
with the notion of multilinear functions. We will briefly discuss these definitions now, as well as
their extension to tensor products of mappings on operator algebras.

First, suppose A1 ∈ L (X1,Y1) , . . . , An ∈ L (Xn,Yn) are operators, for complex Euclidean
spaces

X1 = CΣ1 , . . . ,Xn = CΣn and Y1 = CΓ1 , . . . ,Yn = CΓn .

We define a new operator

A1 ⊗ · · · ⊗ An ∈ L (X1 ⊗ · · · ⊗ Xn,Y1 ⊗ · · · ⊗ Yn) ,

in terms of its matrix representation, as

(A1 ⊗ · · · ⊗ An)((a1, . . . , an), (b1, . . . , bn)) = A1(a1, b1) · · · An(an, bn)



(for all a1 ∈ Γ1, . . . , an ∈ Γn and b1 ∈ Σ1, . . . , bn ∈ Γn).
It is not difficult to check that the operator A1 ⊗ · · · ⊗ An just defined satisfies the equation

(A1 ⊗ · · · ⊗ An)(u1 ⊗ · · · ⊗ un) = (A1u1)⊗ · · · ⊗ (Anun) (2.3)

for all choices of u1 ∈ X1, . . . , un ∈ Xn. Given that X1 ⊗ · · · ⊗ Xn is spanned by the set of all
elementary tensors u1 ⊗ · · · ⊗ un, it is clear that A1 ⊗ · · · ⊗ An is the only operator that can
satisfy this equation (again, for all choices of u1 ∈ X1, . . . , un ∈ Xn). We could, therefore, have
considered the equation (2.3) to have been the defining property of A1 ⊗ · · · ⊗ An.

When considering operator spaces as vector spaces, similar identities to the ones in the pre-
vious lecture for tensor products of vectors become apparent. For example,

A1 ⊗ · · · ⊗ Ak−1 ⊗ (Ak + Bk)⊗ Ak+1 ⊗ · · · ⊗ An

= A1 ⊗ · · · ⊗ Ak−1 ⊗ Ak ⊗ Ak+1 ⊗ · · · ⊗ An

+ A1 ⊗ · · · ⊗ Ak−1 ⊗ Bk ⊗ Ak+1 ⊗ · · · ⊗ An.

In addition, for all choices of complex Euclidean spaces X1, . . . ,Xn, Y1, . . . ,Yn, and Z1, . . . ,Zn,
and all operators A1 ∈ L (X1,Y1) , . . . , An ∈ L (Xn,Yn) and B1 ∈ L (Y1,Z1) , . . . , Bn ∈ L (Yn,Zn),
it holds that

(B1 ⊗ · · · ⊗ Bn)(A1 ⊗ · · · ⊗ An) = (B1A1)⊗ · · · ⊗ (Bn An).

Also note that spectral and singular value decompositions of tensor products of operators are
very easily obtained from those of the individual operators. This allows one to quickly conclude
that

‖A1 ⊗ · · · ⊗ An‖p = ‖A1‖p · · · ‖An‖p ,

along with a variety of other facts that may be derived by similar reasoning.
Tensor products of linear mappings on operator algebras may be defined in a similar way

to those of operators. At this point we have not yet considered concrete representations of such
mappings, to which a Kronecker product construction could be applied, but we will later discuss
such representations. For now let us simply define the linear mapping

Φ1 ⊗ · · · ⊗Φn : L (X1 ⊗ · · · ⊗ Xn)→ L (Y1 ⊗ · · · ⊗ Yn) ,

for any choice of linear mappings Φ1 : L (X1) → L (Y1) , . . . , Φn : L (Xn) → L (Yn), to be the
unique mapping that satisfies the equation

(Φ1 ⊗ · · · ⊗Φn)(A1 ⊗ · · · ⊗ An) = Φ1(A1)⊗ · · · ⊗Φn(An)

for all operators A1 ∈ L (X1) , . . . , An ∈ L (Xn).

Example 2.2 (The partial trace). Let X be a complex Euclidean space. As mentioned above, we
may view the trace as taking the form Tr : L (X )→ L (C) by making the identification C = L (C).
For a second complex Euclidean space Y , we may therefore consider the mapping

Tr ⊗ 1L(Y) : L (X ⊗Y)→ L (Y) .

This is the unique mapping that satisfies

(Tr ⊗ 1L(Y))(A⊗ B) = Tr(A)B



for all A ∈ L (X ) and B ∈ L (Y). This mapping is called the partial trace, and is more commonly
denoted TrX . In general, the subscript refers to the space to which the trace is applied, while
the space or spaces that remains (Y in the case above) are implicit from the context in which the
mapping is used.

One may alternately express the partial trace on X as follows, assuming that {xa : a ∈ Σ} is
any orthonormal basis of X :

TrX (A) = ∑
a∈Σ

(x∗a ⊗ 1Y )A(xa ⊗ 1Y )

for all A ∈ L (X ⊗Y). An analogous expression holds for TrY .

2.3 Norms of operators

The next topic for this lecture concerns norms of operators. As is true more generally, a norm
on the space of operators L (X ,Y), for any choice of complex Euclidean spaces X and Y , is a
function ‖·‖ satisfying the following properties:

1. Positive definiteness: ‖A‖ ≥ 0 for all A ∈ L (X ,Y), with ‖A‖ = 0 if and only if A = 0.

2. Positive scalability: ‖αA‖ = |α| ‖A‖ for all A ∈ L (X ,Y) and α ∈ C.

3. The triangle inequality: ‖A + B‖ ≤ ‖A‖+ ‖B‖ for all A, B ∈ L (X ,Y).

Many interesting and useful norms can be defined on spaces of operators, but in this course
we will mostly be concerned with a single family of norms called Schatten p-norms. This family
includes the three most commonly used norms in quantum information theory: the spectral norm,
the Frobenius norm, and the trace norm.

2.3.1 Definition and basic properties of Schatten norms

For any operator A ∈ L (X ,Y) and any real number p ≥ 1, one defines the Schatten p-norm of
A as

‖A‖p =
[
Tr
(
(A∗A)p/2

)]1/p
.

We also define
‖A‖∞ = max {‖Au‖ : u ∈ X , ‖u‖ = 1} , (2.4)

which happens to coincide with limp→∞ ‖A‖p and therefore explains why the subscript ∞ is
used.

An equivalent way to define these norms is to consider the the vector s(A) of singular values
of A, as discussed at the beginning of the lecture. For each p ∈ [1, ∞], it holds that the Schatten
p-norm of A coincides with the ordinary (vector) p-norm of s(A):

‖A‖p = ‖s(A)‖p .

The Schatten p-norms satisfy many nice properties, some of which are summarized in the
following list:

1. The Schatten p-norms are non-increasing in p. In other words, for any operator A ∈ L (X ,Y)
and for 1 ≤ p ≤ q ≤ ∞ we have

‖A‖p ≥ ‖A‖q .



2. For every p ∈ [1, ∞], the Schatten p-norm is isometrically invariant (and therefore unitarily
invariant). This means that

‖A‖p = ‖UAV∗‖p

for any choice of linear isometries U and V (which include unitary operators U and V) for
which the product UAV∗ makes sense.

3. For each p ∈ [1, ∞], one defines p∗ ∈ [1, ∞] by the equation

1
p
+

1
p∗

= 1.

For every operator A ∈ L (X ,Y), it holds that

‖A‖p = max
{
|〈B, A〉| : B ∈ L (X ,Y) , ‖B‖p∗ ≤ 1

}
.

This implies that
|〈B, A〉| ≤ ‖A‖p ‖B‖p∗ ,

which is Hölder’s inequality for Schatten norms.

4. For any choice of linear operators A ∈ L (X1,X2), B ∈ L (X2,X3), and C ∈ L (X3,X4), and
any choice of p ∈ [1, ∞], we have

‖CBA‖p ≤ ‖C‖∞ ‖B‖p ‖A‖∞ .

It follows that
‖AB‖p ≤ ‖A‖p ‖B‖p (2.5)

for all choices of p ∈ [1, ∞] and operators A and B for which the product AB exists. The
property (2.5) is known as submultiplicativity.

5. It holds that
‖A‖p = ‖A∗‖p = ‖AT‖p =

∥∥A
∥∥

p

for every A ∈ L (X ,Y).

2.3.2 The trace norm, Frobenius norm, and spectral norm

The Schatten 1-norm is more commonly called the trace norm, the Schatten 2-norm is also known
as the Frobenius norm, and the Schatten ∞-norm is called the spectral norm or operator norm. A
common notation for these norms is:

‖·‖tr = ‖·‖1 , ‖·‖F = ‖·‖2 , and ‖·‖ = ‖·‖∞ .

In this course we will generally write ‖·‖ rather than ‖·‖∞, but will not use the notation ‖·‖tr
and ‖·‖F.

Let us note a few special properties of these three particular norms:

1. The spectral norm. The spectral norm ‖·‖ = ‖·‖∞, also called the operator norm, is special in
several respects. It is the norm induced by the Euclidean norm, which is its defining property
(2.4). It satisfies the property

‖A∗A‖ = ‖A‖2

for every A ∈ L (X ,Y).



2. The Frobenius norm. Substituting p = 2 into the definition of ‖·‖p we see that the Frobenius
norm ‖·‖2 is given by

‖A‖2 = [Tr (A∗A)]1/2 =
√
〈A, A〉.

It is therefore the norm defined by the inner product on L (X ,Y). In essence, it is the norm
that one obtains by thinking of elements of L (X ,Y) as ordinary vectors and forgetting that
they are operators:

‖A‖2 =

√
∑
a,b
|A(a, b)|2,

where a and b range over the indices of the matrix representation of A.

3. The trace norm. Substituting p = 1 into the definition of ‖·‖p we see that the trace norm ‖·‖1
is given by

‖A‖1 = Tr
(√

A∗A
)

.

A convenient expression of ‖A‖1, for any operator of the form A ∈ L (X ), is

‖A‖1 = max{|〈A, U〉| : U ∈ U (X )}.

Another useful fact about the trace norm is that it is monotonic:

‖TrY (A)‖1 ≤ ‖A‖1

for all A ∈ L (X ⊗Y). This is because

‖TrY (A)‖1 = max {|〈A, U ⊗ 1Y 〉| : U ∈ U (X )}

while
‖A‖1 = max {|〈A, U〉| : U ∈ U (X ⊗Y)} ;

and the inequality follows from the fact that the first maximum is taken over a subset of the
unitary operators for the second.

Example 2.3. Consider a complex Euclidean space X and any choice of unit vectors u, v ∈ X .
We have

‖uu∗ − vv∗‖p = 21/p
√

1− |〈u, v〉|2. (2.6)

To see this, we note that the operator A = uu∗ − vv∗ is Hermitian and therefore normal, so its
singular values are the absolute values of its nonzero eigenvalues. It will therefore suffice to
prove that the eigenvalues of A are ±

√
1− |〈u, v〉|2, along with the eigenvalue 0 occurring with

multiplicity n − 2, where n = dim(X ). Given that Tr(A) = 0 and rank(A) ≤ 2, it is evident
that the eigenvalues of A are of the form ±λ for some λ ≥ 0, along with eigenvalue 0 with
multiplicity n− 2. As

2λ2 = Tr(A2) = 2− 2|〈u, v〉|2

we conclude λ =
√

1− |〈u, v〉|2, from which (2.6) follows:

‖uu∗ − vv∗‖p =

(
2
(

1− |〈u, v〉|2
)p/2

)1/p

= 21/p
√

1− |〈u, v〉|2.



2.4 The operator-vector correspondence

It will be helpful throughout this course to make use of a simple correspondence between the
spaces L (X ,Y) and Y ⊗X , for given complex Euclidean spaces X and Y .

We define the mapping
vec : L (X ,Y)→ Y ⊗X

to be the linear mapping that represents a change of bases from the standard basis of L (X ,Y) to
the standard basis of Y ⊗X . Specifically, we define

vec(Eb,a) = eb ⊗ ea

for all a ∈ Σ and b ∈ Γ, at which point the mapping is determined for every A ∈ L (X ,Y) by
linearity. In the Dirac notation, this mapping amounts to flipping a bra to a ket:

vec(|b〉 〈a|) = |b〉 |a〉 .

(Note that it is only standard basis elements that are flipped in this way.)
The vec mapping is a linear bijection, which implies that every vector u ∈ Y ⊗ X uniquely

determines an operator A ∈ L (X ,Y) that satisfies vec(A) = u. It is also an isometry, in the sense
that

〈A, B〉 = 〈vec(A), vec(B)〉
for all A, B ∈ L (X ,Y). The following properties of the vec mapping are easily verified:

1. For every choice of complex Euclidean spaces X1, X2, Y1, and Y2, and every choice of opera-
tors A ∈ L (X1,Y1), B ∈ L (X2,Y2), and X ∈ L (X2,X1), it holds that

(A⊗ B) vec(X) = vec(AXBT). (2.7)

2. For every choice of complex Euclidean spaces X and Y , and every choice of operators A, B ∈
L (X ,Y), the following equations hold:

TrX (vec(A) vec(B)∗) = AB∗, (2.8)

TrY (vec(A) vec(B)∗) = (B∗A)T . (2.9)

3. For u ∈ X and v ∈ Y we have
vec(uv∗) = u⊗ v. (2.10)

This includes the special cases vec(u) = u and vec(v∗) = v, which we obtain by setting v = 1
and u = 1, respectively.

Example 2.4 (The Schmidt decomposition). Suppose u ∈ Y ⊗ X for given complex Euclidean
spaces X and Y . Let A ∈ L (X ,Y) be the unique operator for which u = vec(A). There exists a
singular value decomposition

A =
r

∑
i=1

siyix∗i

of A. Consequently

u = vec(A) = vec

(
r

∑
i=1

siyix∗i

)
=

r

∑
i=1

si vec (yix∗i ) =
r

∑
i=1

siyi ⊗ xi.



The fact that {x1, . . . , xr} is orthonormal implies that {x1, . . . , xr} is orthonormal as well.
We have therefore established the validity of the Schmidt decomposition, which states that every

vector u ∈ Y ⊗X can be expressed in the form

u =
r

∑
i=1

siyi ⊗ zi

for positive real numbers s1, . . . , sr and orthonormal sets {y1, . . . , yr} ⊂ Y and {z1, . . . , zr} ⊂ X .

2.5 Analysis

Mathematical analysis is concerned with notions of limits, continuity, differentiation, integration
and measure, and so on. As some of the proofs that we will encounter in the course will require
arguments based on these notions, it is appropriate to briefly review some of the necessary
concepts here.

It will be sufficient for our needs that this summary is narrowly focused on Euclidean spaces
(as opposed to infinite dimensional spaces). As a result, these notes do not treat analytic concepts
in the sort of generality that would be typical of a standard analysis book or course. If you are
interested in such a book, the following one is considered a classic:

• W. Rudin. Principles of Mathematical Analysis. McGraw–Hill, 1964.

2.5.1 Basic notions of analysis

Let V be a real or complex Euclidean space, and (for this section only) let us allow ‖·‖ to be any
choice of a fixed norm on V . We may take ‖·‖ to be the Euclidean norm, but nothing changes
if we choose a different norm. (The validity of this assumption rests on the fact that Euclidean
spaces are finite-dimensional.)

The open ball of radius r around a vector u ∈ X is defined as

Br(u) = {v ∈ X : ‖u− v‖ < r} ,

and the sphere of radius r around u is defined as

Sr(u) = {v ∈ X : ‖u− v‖ = r} .

The closed ball of radius r around u is the union Br(u) ∪ Sr(u).
A set A ⊆ X is open if, for every u ∈ A there exists a choice of ε > 0 such that Bε(u) ⊆ A.

Equivalently, A ⊆ X is open if it is the union of some collection of open balls. (This can be an
empty, finite, or countably or uncountably infinite collections of open balls.) A set A ⊆ X is
closed if it is the complement of an open set.

Given subsets B ⊆ A ⊆ X , we say that B is open or closed relative to A if B is the intersection
of A and some open or closed set in X , respectively.

Let A and B be subsets of a Euclidean space X that satisfy B ⊆ A. Then the closure of B
relative to A is the intersection of all subsets C for which B ⊆ C and C is closed relative to A. In
other words, this is the smallest set that contains B and is closed relative to A. The set B is dense
in A if the closure of B relative to A is A itself.



Suppose X and Y are Euclidean spaces and f : A → Y is a function defined on some subset
A ⊆ X . For any point u ∈ A, the function f is said to be continuous at u if the following holds:
for every ε > 0 there exists δ > 0 such that

‖ f (v)− f (u)‖ < ε

for all v ∈ Bδ(u) ∩A. An alternate way of writing this condition is

(∀ε > 0)(∃δ > 0)[ f (Bδ(u) ∩A) ⊆ Bε( f (u))].

If f is continuous at every point in A, then we just say that f is continuous on A.
The preimage of a set B ⊆ Y under a function f : A → Y defined on some subset A ⊆ X is

defined as
f−1(B) = {u ∈ A : f (u) ∈ B} .

Such a function f is continuous on A if and only if the preimage of every open set in Y is open
relative to A. Equivalently, f is continuous on A if and only if the preimage of every closed set
in Y is closed relative to A.

A sequence of vectors in a subset A of a Euclidean space X is a function s : N→ A, where N

denotes the set of natural numbers {1, 2, . . .}. We usually denote a general sequence by (un)n∈N

or (un), and it is understood that the function s in question is given by s : n 7→ un. A sequence
(un)n∈N in X converges to u ∈ X if, for all ε > 0 there exists N ∈ N such that ‖un − u‖ < ε for
all n ≥ N.

A sequence (vn) is a sub-sequence of (un) if there is a strictly increasing sequence of nonneg-
ative integers (kn)n∈N such that vn = ukn for all n ∈ N. In other words, you get a sub-sequence
from a sequence by skipping over whichever vectors you want, provided that you still have
infinitely many vectors left.

2.5.2 Compact sets

A set A ⊆ X is compact if every sequence (un) in A has a sub-sequence (vn) that converges to a
point v ∈ A. In any Euclidean space X , a set A is compact if and only if it is closed and bounded
(which means it is contained in Br(0) for some real number r > 0). This fact is known as the
Heine-Borel Theorem.

Compact sets have some nice properties. Two properties that are noteworthy for the purposes
of this course are following:

1. If A is compact and f : A → R is continuous on A, then f achieves both a maximum and
minimum value on A.

2. Let X and Y be complex Euclidean spaces. If A ⊂ X is compact and f : X → Y is continuous
on A, then f (A) ⊂ Y is also compact.

2.6 Convexity

Many sets of interest in the theory of quantum information are convex sets, and when reasoning
about some of these sets we will make use of various facts from the the theory of convexity (or
convex analysis). Two books on convexity theory that you may find helpful are these:

• R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

• A. Barvinok. A Course in Convexity. Volume 54 of Graduate Studies in Mathematics, American
Mathematical Society, 2002.



2.6.1 Basic notions of convexity

Let X be any Euclidean space. A set A ⊆ X is convex if, for all choices of u, v ∈ A and λ ∈ [0, 1],
we have

λu + (1− λ)v ∈ A.

Another way to say this is that A is convex if and only if you can always draw the straight line
between any two points of A without going outside A.

A point w ∈ A in a convex set A is said to be an extreme point of A if, for every expression

w = λu + (1− λ)v

for u, v ∈ A and λ ∈ (0, 1), it holds that u = v = w. These are the points that do not lie properly
between two other points in A.

A set A ⊆ X is a cone if, for all choices of u ∈ A and λ ≥ 0, we have that λu ∈ A. A convex
cone is simply a cone that is also convex. A cone A is convex if and only if, for all u, v ∈ A, it
holds that u + v ∈ A.

The intersection of any collection of convex sets is also convex. Also, if A,B ⊆ X are convex,
then their sum and difference

A+ B = {u + v : u ∈ A, v ∈ B} and A−B = {u− v : u ∈ A, v ∈ B}

are also convex.

Example 2.5. For any X , the set Pos (X ) is a convex cone. This is so because it follows easily
from the definition of positive semidefinite operators that Pos (X ) is a cone and A + B ∈ Pos (X )
for all A, B ∈ Pos (X ). The only extreme point of this set is 0 ∈ L (X ). The set D (X ) of density
operators on X is convex, but it is not a cone. Its extreme points are precisely those density
operators having rank 1, i.e., those of the form uu∗ for u ∈ X being a unit vector.

For any finite, nonempty set Σ, we say that a vector p ∈ RΣ is a probability vector if it holds
that p(a) ≥ 0 for all a ∈ Σ and ∑a∈Σ p(a) = 1. A convex combination of points in A is any finite
sum of the form

∑
a∈Σ

p(a)ua

for {ua : a ∈ Σ} ⊂ A and p ∈ RΣ a probability vector. Notice that we are speaking only of finite
sums when we refer to convex combinations.

The convex hull of a set A ⊆ X , denoted conv(A), is the intersection of all convex sets contain-
ing A. Equivalently, it is precisely the set of points that can be written as convex combinations
of points in A. This is true even in the case that A is infinite. The convex hull conv(A) of a
closed set A need not itself be closed. However, if A is compact, then so too is conv(A). The
Krein-Milman theorem states that every compact, convex set A is equal to the convex hull of its
extreme points.

2.6.2 A few theorems about convex analysis in real Euclidean spaces

It will be helpful later for us to make use of the following three theorems about convex sets.
These theorems concern just real Euclidean spaces RΣ, but this will not limit their applicability
to quantum information theory: we will use them when considering spaces Herm

(
CΓ) of Her-

mitian operators, which may be considered as real Euclidean spaces taking the form RΓ×Γ (as
discussed in the previous lecture).



The first theorem is Carathéodory’s theorem. It implies that every element in the convex hull of
a subset A ⊆ RΣ can always be written as a convex combination of a small number of points in
A (where small means at most |Σ|+ 1). This is true regardless of the size or any other properties
of the set A.

Theorem 2.6 (Carathéodory’s theorem). Let A be any subset of a real Euclidean space RΣ, and let m =
|Σ|+ 1. For every element u ∈ conv(A), there exist m (not necessarily distinct) points u1, . . . , um ∈ A,
such that u may be written as a convex combination of u1, . . . , um.

The second theorem is an example of a minmax theorem that is attributed to Maurice Sion. In
general, minmax theorems provide conditions under which a minimum and a maximum can be
reversed without changing the value of the expression in which they appear.

Theorem 2.7 (Sion’s minmax theorem). Suppose that A and B are compact and convex subsets of a
real Euclidean space RΣ. It holds that

min
u∈A

max
v∈B
〈u, v〉 = max

v∈B
min
u∈A
〈u, v〉 .

This theorem is not actually as general as the one proved by Sion, but it will suffice for our needs.
One of the ways it can be generalized is to drop the condition that one of the two sets is compact
(which generally requires either the minimum or the maximum to be replaced by an infimum or
supremum).

Finally, let us state one version of a separating hyperplane theorem, which essentially states that
if one has a closed, convex subset A ⊂ RΣ and a point u ∈ RΣ that is not contained in A, then
it is possible to cut RΣ into two separate (open) half-spaces so that one contains A and the other
contains u.

Theorem 2.8 (Separating hyperplane theorem). Suppose that A is a closed and convex subset of a real
Euclidean space RΣ and u ∈ RΣ not contained in A. There exists a vector v ∈ RΣ for which

〈v, w〉 > 〈v, u〉

for all choices of w ∈ A.

There are other separating hyperplane theorems that are similar in spirit to this one, but this one
will be sufficient for us.
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