
CS 766/QIC 820 Theory of Quantum Information (Fall 2011)

Lecture 1: Mathematical preliminaries (part 1)

Welcome to CS 766/QIC 820 Theory of Quantum Information. The goal of this lecture, as well as
the next, is to present a brief overview of some of the basic mathematical concepts and tools that
will be important in subsequent lectures of the course. In this lecture we will discuss various
facts about linear algebra and analysis in finite-dimensional vector spaces.

1.1 Complex Euclidean spaces

We begin with the simple notion of a complex Euclidean space. As will be discussed later (in
Lecture 3), we associate a complex Euclidean space with every discrete and finite physical system;
and fundamental notions such as states and measurements of systems are represented in linear-
algebraic terms that refer to these spaces.

1.1.1 Definition of complex Euclidean spaces

For any finite, nonempty set Σ, we denote by CΣ the set of all functions from Σ to the complex
numbers C. The collection CΣ forms a vector space of dimension |Σ| over the complex numbers
when addition and scalar multiplication are defined in the following standard way:

1. Addition: given u, v ∈ CΣ, the vector u + v ∈ CΣ is defined by the equation (u + v)(a) =
u(a) + v(a) for all a ∈ Σ.

2. Scalar multiplication: given u ∈ CΣ and α ∈ C, the vector αu ∈ CΣ is defined by the equation
(αu)(a) = αu(a) for all a ∈ Σ.

Any vector space defined in this way for some choice of a finite, nonempty set Σ will be called a
complex Euclidean space.

Complex Euclidean spaces will generally be denoted by scripted capital letters near the end
of the alphabet, such asW , X , Y , and Z , when it is necessary or helpful to assign specific names
to them. Subsets of these spaces will also be denoted by scripted letters, and when possible our
convention will be to use letters near the beginning of the alphabet, such as A, B, and C, when
these subsets are not themselves necessarily vector spaces. Vectors will typically be denoted by
lowercase Roman letters, again near the end of the alphabet, such as u, v, w, x, y, and z.

In the case where Σ = {1, . . . , n} for some positive integer n, one typically writes Cn rather
than C{1,...,n}. For a given positive integer n, it is typical to view a vector u ∈ Cn as an n-tuple
u = (u1, . . . , un), or as a column vector of the form

u =


u1
u2
...

un

 .



The convention to write ui rather than u(i) in such expressions is simply a matter of typographic
appeal, and is avoided when it is not helpful or would lead to confusion, such as when vectors
are subscripted for another purpose.

It is, of course, the case that one could simply identify CΣ with Cn, for n = |Σ|, with respect
to any fixed choice of a bijection between Σ and {1, . . . , n}. If it is convenient to make this
simplifying assumption when proving facts about complex Euclidean spaces, we will do that; but
there is also a significant convenience to be found in allowing for arbitrary (finite and nonempty)
index sets, which is why we define complex Euclidean spaces in the way that we have.

1.1.2 Inner product and norms of vectors

The inner product 〈u, v〉 of vectors u, v ∈ CΣ is defined as

〈u, v〉 = ∑
a∈Σ

u(a) v(a).

It may be verified that the inner product satisfies the following properties:

1. Linearity in the second argument: 〈u, αv + βw〉 = α 〈u, v〉+ β 〈u, w〉 for all u, v, w ∈ CΣ and
α, β ∈ C.

2. Conjugate symmetry: 〈u, v〉 = 〈v, u〉 for all u, v ∈ CΣ.

3. Positive definiteness: 〈u, u〉 ≥ 0 for all u ∈ CΣ, with 〈u, u〉 = 0 if and only if u = 0.

One typically refers to any function satisfying these three properties as an inner product, but
this is the only inner product for vectors in complex Euclidean spaces that is considered in this
course.

The Euclidean norm of a vector u ∈ CΣ is defined as

‖u‖ =
√
〈u, u〉 =

√
∑
a∈Σ
|u(a)|2.

The Euclidean norm satisfies the following properties, which are the defining properties of any
function that is called a norm:

1. Positive definiteness: ‖u‖ ≥ 0 for all u ∈ CΣ, with ‖u‖ = 0 if and only if u = 0.

2. Positive scalability: ‖αu‖ = |α| ‖u‖ for all u ∈ CΣ and α ∈ C.

3. The triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ CΣ.

The Euclidean norm corresponds to the special case p = 2 of the class of p-norms, defined for
each u ∈ CΣ as

‖u‖p =

(
∑
a∈Σ
|u(a)|p

)1/p

for 1 ≤ p < ∞, and
‖u‖∞ = max{|u(a)| : a ∈ Σ}.

The above three norm properties (positive definiteness, positive scalability, and the triangle in-
equality) hold for ‖·‖ replaced by ‖·‖p for any choice of p ∈ [1, ∞].

The Cauchy-Schwarz inequality states that

|〈u, v〉| ≤ ‖u‖ ‖v‖



for all u, v ∈ CΣ, with equality if and only if u and v are linearly dependent. The Cauchy-Schwarz
inequality is generalized by Hölder’s inequality, which states that

|〈u, v〉| ≤ ‖u‖p ‖v‖q

for all u, v ∈ CΣ, provided p, q ∈ [1, ∞] satisfy 1
p +

1
q = 1 (with the interpretation 1

∞ = 0).

1.1.3 Orthogonal and orthonormal sets

A collection of vectors
{ua : a ∈ Γ} ⊂ CΣ,

indexed by a given finite, nonempty set Γ, is said to be an orthogonal set if it holds that 〈ua, ub〉 = 0
for all choices of a, b ∈ Γ with a 6= b. Such a set is necessarily linearly independent, provided it
does not include the zero vector.

An orthogonal set of unit vectors is called an orthonormal set, and when such a set forms a
basis it is called an orthonormal basis. It holds that an orthonormal set {ua : a ∈ Γ} ⊆ CΣ is an
orthonormal basis of CΣ if and only if |Γ| = |Σ|.

The standard basis of CΣ is the orthonormal basis given by {ea : a ∈ Σ}, where

ea(b) =
{

1 if a = b
0 if a 6= b

for all a, b ∈ Σ.

Remark 1.1. When using the Dirac notation, one writes |a〉 rather than ea when referring to
standard basis elements; and for arbitrary vectors one writes |u〉 rather than u (although φ, ψ,
and other Greek letters are much more commonly used to name vectors). We will generally not
use Dirac notation in this course, because it tends to complicate the sorts of expressions we will
encounter. One exception is the use of Dirac notation for the presentation of simple examples,
where it seems to increase clarity.

1.1.4 Real Euclidean spaces

Real Euclidean spaces are defined in a similar way to complex Euclidean spaces, except that the
field of complex numbers C is replaced by the field of real numbers R in each of the definitions
and concepts in which it arises. Naturally, complex conjugation acts trivially in the real case, and
may therefore be omitted.

Although complex Euclidean spaces will play a much more prominent role than real Eu-
clidean spaces in this course, we will restrict our attention to real Euclidean spaces in the context
of convexity theory. This will not limit the applicability of these concepts: they will generally
be applied to the real Euclidean space consisting of all Hermitian operators acting on a given
complex Euclidean space. Such spaces will be discussed later in this lecture.

1.2 Linear operators

Given complex Euclidean spaces X and Y , one writes L (X ,Y) to refer to the collection of all
linear mappings of the form

A : X → Y . (1.1)



Such mappings will be referred to as linear operators, or simply operators, from X to Y in this
course. Parentheses are typically omitted when expressing the action of linear operators on
vectors when there is little chance of confusion in doing so. For instance, one typically writes Au
rather than A(u) to denote the vector resulting from the application of an operator A ∈ L (X ,Y)
to a vector u ∈ X .

The set L (X ,Y) forms a vector space, where addition and scalar multiplication are defined
as follows:

1. Addition: given A, B ∈ L (X ,Y), the operator A + B ∈ L (X ,Y) is defined by the equation

(A + B)u = Au + Bu

for all u ∈ X .

2. Scalar multiplication: given A ∈ L (X ,Y) and α ∈ C, the operator αA ∈ L (X ,Y) is defined
by the equation

(αA)u = α Au

for all u ∈ X .

The dimension of this vector space is given by dim(L (X ,Y)) = dim(X )dim(Y).
The kernel of an operator A ∈ L (X ,Y) is the subspace of X defined as

ker(A) = {u ∈ X : Au = 0},

while the image of A is the subspace of Y defined as

im(A) = {Au : u ∈ X}.

The rank of A, denoted rank(A), is the dimension of the subspace im(A). For every operator
A ∈ L (X ,Y) it holds that

dim(ker(A)) + rank(A) = dim(X ).

1.2.1 Matrices and their association with operators

A matrix over the complex numbers is a mapping of the form

M : Γ× Σ→ C

for finite, nonempty sets Σ and Γ. The collection of all matrices of this form is denotedMΓ,Σ(C).
For a ∈ Γ and b ∈ Σ the value M(a, b) is called the (a, b) entry of M, and the elements a and b
are referred to as indices in this context: a is the row index and b is the column index of the entry
M(a, b).

The set MΓ,Σ(C) is a vector space with respect to vector addition and scalar multiplication
defined in the following way:

1. Addition: given M, K ∈ MΓ,Σ(C), the matrix M + K ∈ MΓ,Σ(C) is defined by the equation

(M + K)(a, b) = M(a, b) + K(a, b)

for all a ∈ Γ and b ∈ Σ.



2. Scalar multiplication: given M ∈ MΓ,Σ(C) and α ∈ C, the matrix αM ∈ MΓ,Σ(C) is defined
by the equation

(αM)(a, b) = αM(a, b)

for all a ∈ Γ and b ∈ Σ.

As a vector space,MΓ,Σ(C) is therefore equivalent to the complex Euclidean space CΓ×Σ.
Multiplication of matrices is defined in the following standard way. Given matrices M ∈

MΓ,∆(C) and K ∈ M∆,Σ(C), for finite nonempty sets Γ, ∆, and Σ, the matrix MK ∈ MΓ,Σ(C) is
defined as

(MK)(a, b) = ∑
c∈∆

M(a, c)K(c, b)

for all a ∈ Γ and b ∈ Σ.
Linear operators from one complex Euclidean space to another are naturally represented by

matrices. For X = CΣ and Y = CΓ, one associates with each operator A ∈ L (X ,Y) a matrix
MA ∈ MΓ,Σ(C) defined as

MA(a, b) = 〈ea, Aeb〉
for each a ∈ Γ and b ∈ Σ. Conversely, to each matrix M ∈ MΓ,Σ(C) one associates a linear
operator AM ∈ L (X ,Y) defined by

(AMu)(a) = ∑
b∈Σ

M(a, b)u(b) (1.2)

for each a ∈ Γ. The mappings A 7→ MA and M 7→ AM are linear and inverse to one other,
and compositions of linear operators are represented by matrix multiplications: MAB = MA MB
whenever A ∈ L (Y ,Z), B ∈ L (X ,Y) and X , Y , and Z are complex Euclidean spaces. Equiv-
alently, AMK = AM AK for any choice of matrices M ∈ MΓ,∆(C) and K ∈ M∆,Σ(C) for finite
nonempty sets Σ, ∆, and Γ.

This correspondence between linear operators and matrices will hereafter not be mentioned
explicitly in these notes: we will freely switch between speaking of operators and speaking of
matrices, depending on which is more suitable within the context at hand. A preference will
generally be given to speak of operators, and to implicitly associate a given operator’s matrix
representation with it as necessary. More specifically, for a given choice of complex Euclidean
spaces X = CΣ and Y ∈ CΓ, and for a given operator A ∈ L (X ,Y), the matrix MA ∈ MΓ,Σ(C)
will simply be denoted A and its (a, b)-entry as A(a, b).

1.2.2 The entry-wise conjugate, transpose, and adjoint

For every operator A ∈ L (X ,Y), for complex Euclidean spaces X = CΣ and Y = CΓ, one defines
three additional operators,

A ∈ L (X ,Y) and AT, A∗ ∈ L (Y ,X ) ,

as follows:

1. The operator A ∈ L (X ,Y) is the operator whose matrix representation has entries that are
complex conjugates to the matrix representation of A:

A(a, b) = A(a, b)

for all a ∈ Γ and b ∈ Σ.



2. The operator AT ∈ L (Y ,X ) is the operator whose matrix representation is obtained by trans-
posing the matrix representation of A:

AT(b, a) = A(a, b)

for all a ∈ Γ and b ∈ Σ.

3. The operator A∗ ∈ L (Y ,X ) is the unique operator that satisfies the equation

〈v, Au〉 = 〈A∗v, u〉

for all u ∈ X and v ∈ Y . It may be obtained by performing both of the operations described
in items 1 and 2:

A∗ = AT.

The operators A, AT, and A∗ will be called the entry-wise conjugate, transpose, and adjoint operators
to A, respectively.

The mappings A 7→ A and A 7→ A∗ are conjugate linear and the mapping A 7→ AT is linear:

αA + βB = α A + β B,

(αA + βB)∗ = αA∗ + βB∗,
(αA + βB)T = αAT + βBT,

for all A, B ∈ L (X ,Y) and α, β ∈ C. These mappings are bijections, each being its own inverse.
Every vector u ∈ X in a complex Euclidean space X may be identified with the linear operator

in L (C,X ) that maps α 7→ αu. Through this identification the linear mappings u ∈ L (C,X ) and
uT, u∗ ∈ L (X , C) are defined as above. As an element of X , the vector u is of course simply the
entry-wise complex conjugate of u, i.e., if X = CΣ then

u(a) = u(a)

for every a ∈ Σ. For each vector u ∈ X the mapping u∗ ∈ L (X , C) satisfies u∗v = 〈u, v〉 for all
v ∈ X . The space of linear operators L (X , C) is called the dual space of X , and is often denoted
by X ∗ rather than L (X , C).

Assume that X = CΣ and Y = CΓ. For each choice of a ∈ Γ and b ∈ Σ, the operator
Ea,b ∈ L (X ,Y) is defined as Ea,b = eae∗b , or equivalently

Ea,b(c, d) =
{

1 if (a = c) and (b = d)
0 if (a 6= c) or (b 6= d).

The set {Ea,b : a ∈ Γ, b ∈ Σ} is a basis of L (X ,Y), and will be called the standard basis of this
space.

1.2.3 Direct sums

The direct sum of n complex Euclidean spaces X1 = CΣ1 , . . . ,Xn = CΣn is the complex Euclidean
space

X1 ⊕ · · · ⊕ Xn = C∆,

where
∆ = {(1, a1) : a1 ∈ Σ1} ∪ · · · ∪ {(n, an) : an ∈ Σn}.



One may view ∆ as the disjoint union of Σ1, . . . , Σn.
For vectors u1 ∈ X1, . . . , un ∈ Xn, the notation u1 ⊕ · · · ⊕ un ∈ X1 ⊕ · · · ⊕ Xn refers to the

vector for which
(u1 ⊕ · · · ⊕ un)(j, aj) = uj(aj),

for each j ∈ {1, . . . , n} and aj ∈ Σj. If each vector uj is viewed as a column vector of dimension∣∣Σj
∣∣, the vector u1 ⊕ · · · ⊕ un may be viewed as a (block) column vectoru1

...
un


having dimension |Σ1 |+ · · ·+ |Σn |. Every element of the space X1 ⊕ · · · ⊕ Xn can be written as
u1 ⊕ · · · ⊕ un for a unique choice of vectors u1, . . . , un. The following identities hold for every
choice of u1, v1 ∈ X1, . . . , un, vn ∈ Xn, and α ∈ C:

u1 ⊕ · · · ⊕ un + v1 ⊕ · · · ⊕ vn = (u1 + v1)⊕ · · · ⊕ (un + vn)

α(u1 ⊕ · · · ⊕ un) = (αu1)⊕ · · · ⊕ (αun)

〈u1 ⊕ · · · ⊕ un, v1 ⊕ · · · ⊕ vn〉 = 〈u1, v1〉+ · · ·+ 〈un, vn〉 .

Now suppose that X1 = CΣ1 , . . . , Xn = CΣn and Y1 = CΓ1 , . . . , Ym = CΓm for positive integers
n and m, and finite, nonempty sets Σ1, . . . , Σn and Γ1, . . . , Γm. The matrix associated with a given
operators of the form A ∈ L (X1 ⊕ · · · ⊕ Xn,Y1 ⊕ · · · ⊕ Ym) may be identified with a block matrix

A =

A1,1 · · · A1,n
...

. . .
...

Am,1 · · · Am,n

 ,

where Aj,k ∈ L
(
Xk,Yj

)
for each j ∈ {1, . . . , m} and k ∈ {1, . . . , n}. These are the uniquely

determined operators for which it holds that

A(u1 ⊕ · · · ⊕ un) = v1 ⊕ · · · ⊕ vm,

for v1 ∈ Y1, . . . , vm ∈ Ym defined as

vj = (Aj,1u1) + · · ·+ (Aj,nun)

for each j ∈ {1, . . . , m}.

1.2.4 Tensor products

The tensor product of X1 = CΣ1 , . . . ,Xn = CΣn is the complex Euclidean space

X1 ⊗ · · · ⊗ Xn = CΣ1×···×Σn .

For vectors u1 ∈ X1, . . . , un ∈ Xn, the vector u1 ⊗ · · · ⊗ un ∈ X1 ⊗ · · · ⊗ Xn is defined as

(u1 ⊗ · · · ⊗ un)(a1, . . . , an) = u1(a1) · · · un(an).



Vectors of the form u1⊗ · · · ⊗ un are called elementary tensors. They span the space X1⊗ · · · ⊗ Xn,
but not every element of X1 ⊗ · · · ⊗ Xn is an elementary tensor.

The following identities hold for every choice of u1, v1 ∈ X1, . . . , un, vn ∈ Xn, α ∈ C, and
k ∈ {1, . . . , n}:

u1 ⊗ · · · ⊗ uk−1 ⊗ (uk + vk)⊗ uk+1 ⊗ · · · ⊗ un

= u1 ⊗ · · · ⊗ uk−1 ⊗ uk ⊗ uk+1 ⊗ · · · ⊗ un

+ u1 ⊗ · · · ⊗ uk−1 ⊗ vk ⊗ uk+1 ⊗ · · · ⊗ un

α(u1 ⊗ · · · ⊗ un) = (αu1)⊗ u2 ⊗ · · · ⊗ un = · · · = u1 ⊗ u2 ⊗ · · · ⊗ un−1 ⊗ (αun)

〈u1 ⊗ · · · ⊗ un, v1 ⊗ · · · ⊗ vn〉 = 〈u1, v1〉 · · · 〈un, vn〉 .

It is worthwhile to note that the definition of tensor products just presented is a concrete
definition that is sometimes known as the Kronecker product. In contrast, tensor products are
often defined in a more abstract way that stresses their close connection to multilinear functions.
There is valuable intuition to be drawn from this connection, but for our purposes it will suffice
that we take note of the following fact.

Proposition 1.2. Let X1, . . . ,Xn and Y be complex Euclidean spaces, and let φ : X1 × · · · × Xn → Y
be a multilinear function (i.e., a function for which the mapping uj 7→ φ(u1, . . . , un) is linear for all
j ∈ {1, . . . , n} and all choices of u1, . . . , uj−1, uj+1, . . . , un. It holds that there exists an operator A ∈
L (X1 ⊗ · · · ⊗ Xn,Y) for which

φ(u1, . . . , un) = A(u1 ⊗ · · · ⊗ un).

1.3 Algebras of operators

For every complex Euclidean space X , the notation L (X ) is understood to be a shorthand for
L (X ,X ). The space L (X ) has special algebraic properties that are worthy of note. In particular,
L (X ) is an associative algebra; it is a vector space, and the composition of operators is associative
and bilinear:

(AB)C = A(BC),
C(αA + βB) = αCA + βCB,
(αA + βB)C = αAC + βBC,

for every choice of A, B, C ∈ L (X ) and α, β ∈ C.
The identity operator 1 ∈ L (X ) is the operator defined as 1u = u for all u ∈ X , and is

denoted 1X when it is helpful to indicate explicitly that it acts on X . An operator A ∈ L (X ) is
invertible if there exists an operator B ∈ L (X ) such that BA = 1. When such an operator B exists
it is necessarily unique, also satisfies AB = 1, and is denoted A−1. The collection of all invertible
operators in L (X ) is denoted GL(X ), and is called the general linear group of X .

For every pair of operators A, B ∈ L (X ), the Lie bracket [A, B] ∈ L (X ) is defined as [A, B] =
AB− BA.



1.3.1 Trace and determinant

Operators in the algebra L (X ) are represented by square matrices, which means that their rows
and columns are indexed by the same set. We define two important functions from L (X ) to C,
the trace and the determinant, based on matrix representations of operators as follows:

1. The trace of an operator A ∈ L (X ), for X = CΣ, is defined as

Tr(A) = ∑
a∈Σ

A(a, a).

2. The determinant of an operator A ∈ L (X ), for X = CΣ, is defined by the equation

Det(A) = ∑
π∈Sym(Σ)

sign(π) ∏
a∈Σ

A(a, π(a)),

where Sym(Σ) is the group of permutations on the set Σ and sign(π) is the sign of the per-
mutation π (which is +1 if π is expressible as a product of an even number of transpositions
of elements of the set Σ, and −1 if π is expressible as a product of an odd number of trans-
positions).

The trace is a linear function, and possesses the property that

Tr(AB) = Tr(BA)

for any choice of operators A ∈ L (X ,Y) and B ∈ L (Y ,X ), for arbitrary complex Euclidean
spaces X and Y .

By means of the trace, one defines an inner product on the space L (X ,Y), for any choice of
complex Euclidean spaces X and Y , as

〈A, B〉 = Tr (A∗B)

for all A, B ∈ L (X ,Y). It may be verified that this inner product satisfies the requisite properties
of being an inner product:

1. Linearity in the second argument:

〈A, αB + βC〉 = α 〈A, B〉+ β 〈A, C〉

for all A, B, C ∈ L (X ,Y) and α, β ∈ C.

2. Conjugate symmetry: 〈A, B〉 = 〈B, A〉 for all A, B ∈ L (X ,Y).
3. Positive definiteness: 〈A, A〉 ≥ 0 for all A ∈ L (X ,Y), with 〈A, A〉 = 0 if and only if A = 0.

This inner product is sometimes called the Hilbert–Schmidt inner product.
The determinant is multiplicative,

Det(AB) = Det(A)Det(B)

for all A, B ∈ L (X ), and its value is nonzero if and only if its argument is invertible.



1.3.2 Eigenvectors and eigenvalues

If A ∈ L (X ) and u ∈ X is a nonzero vector such that Au = λu for some choice of λ ∈ C, then u
is said to be an eigenvector of A and λ is its corresponding eigenvalue.

For every operator A ∈ L (X ), one has that

pA(z) = Det(z1X − A)

is a monic polynomial in z having degree dim(X ). This polynomial is the characteristic polynomial
of A. The spectrum of A, denoted spec(A), is the multiset containing the roots of the polynomial
pA(z), with each root appearing a number of times equal to its multiplicity. As pA is monic, it
holds that

pA(z) = ∏
λ∈spec(A)

(z− λ)

Each element λ ∈ spec(A) is an eigenvalue of A.
The trace and determinant may be expressed in terms of the spectrum as follows:

Tr(A) = ∑
λ∈spec(A)

λ

and
Det(A) = ∏

λ∈spec(A)

λ

for every A ∈ L (X ).

1.4 Important classes of operators

A collection of classes of operators that have importance in quantum information are discussed
in this section.

1.4.1 Normal operators

An operator A ∈ L (X ) is normal if and only if it commutes with its adjoint: [A, A∗] = 0, or
equivalently AA∗ = A∗A. The importance of this collection of operators, for the purposes of this
course, is mainly derived from two facts: (1) the normal operators are those for which the spectral
theorem (discussed later in Section 1.5) holds, and (2) most of the special classes of operators that
are discussed below are subsets of the normal operators.

1.4.2 Hermitian operators

An operator A ∈ L (X ) is Hermitian if A = A∗. The set of Hermitian operators acting on a given
complex Euclidean space X will hereafter be denoted Herm (X ) in this course:

Herm (X ) = {A ∈ L (X ) : A = A∗}.

Every Hermitian operator is obviously a normal operator.



The eigenvalues of every Hermitian operator are necessarily real numbers, and can therefore
be ordered from largest to smallest. Under the assumption that A ∈ Herm (X ) for X an n-
dimensional complex Euclidean space, one denotes the k-th largest eigenvalue of A by λk(A).
Equivalently, the vector

λ(A) = (λ1(A), λ2(A), . . . , λn(A)) ∈ Rn

is defined so that
spec(A) = {λ1(A), λ2(A), . . . , λn(A)}

and
λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A).

The sum of two Hermitian operators is obviously Hermitian, as is any real scalar multiple
of a Hermitian operator. This means that the set Herm (X ) forms a vector space over the real
numbers. The inner product of two Hermitian operators is real as well, 〈A, B〉 ∈ R for all
A, B ∈ Herm (X ), so this space is in fact a real inner product space.

We can, in fact, go a little bit further along these lines. Assuming that X = CΣ, and that the
elements of Σ are ordered in some fixed way, let us define a Hermitian operator Ha,b ∈ Herm (X ),
for each choice of a, b ∈ Σ, as follows:

Ha,b =


Ea,a if a = b

1√
2
(Ea,b + Eb,a) if a < b

1√
2
(iEa,b − iEb,a) if a > b.

The collection {Ha,b : a, b ∈ Σ} is orthonormal (with respect to the inner product defined on
L (X )), and every Hermitian operator A ∈ Herm (X ) can be expressed as a real linear combina-
tion of matrices in this collection. It follows that Herm (X ) is a vector space of dimension |Σ|2
over the real numbers, and that there exists an isometric isomorphism between Herm (X ) and
RΣ×Σ. This fact will allow us to apply facts about convex analysis, which typically hold for real
Euclidean spaces, to Herm (X ) (as will be discussed in the next lecture).

1.4.3 Positive semidefinite operators

An operator A ∈ L (X ) is positive semidefinite if and only if it holds that A = B∗B for some
operator B ∈ L (X ). Hereafter, when it is reasonable to do so, a convention to use the symbols
P, Q and R to denote general positive semidefinite matrices will be followed. The collection of
positive semidefinite operators acting on X is denoted Pos (X ), so that

Pos (X ) = {B∗B : B ∈ L (X )}.

There are alternate ways to describe positive semidefinite operators that are useful in different
situations. In particular, the following items are equivalent for a given operator P ∈ L (X ):

1. P is positive semidefinite.

2. P = B∗B for some choice of a complex Euclidean space Y and an operator B ∈ L (X ,Y).
3. u∗Pu is a nonnegative real number for every choice of u ∈ X .

4. 〈Q, P〉 is a nonnegative real number for every Q ∈ Pos (X ).



5. P is Hermitian and every eigenvalue of P is nonnegative.

6. There exists a complex Euclidean space Y and a collection of vectors {ua : a ∈ Σ} ⊂ Y , such
that P(a, b) = 〈ua, ub〉.

Item 6 remains valid if the additional constraint dim(Y) = dim(X ) is imposed.
The notation P ≥ 0 is also used to mean that P is positive semidefinite, while A ≥ B means

that A− B is positive semidefinite. (This notation is only used when A and B are both Hermitian.)

1.4.4 Positive definite operators

A positive semidefinite operator P ∈ Pos (X ) is said to be positive definite if, in addition to being
positive semidefinite, it is invertible. The notation

Pd (X ) = {P ∈ Pos (X ) : Det(P) 6= 0}

will be used to denote the set of such operators for a given complex Euclidean space X . The
following items are equivalent for a given operator P ∈ L (X ):

1. P is positive definite.

2. 〈u, Pu〉 is a positive real number for every choice of a nonzero vector u ∈ X .

3. P is Hermitian, and every eigenvalue of P is positive.

4. P is Hermitian, and there exists a positive real number ε > 0 such that P ≥ ε1.

1.4.5 Density operators

Positive semidefinite operators having trace equal to 1 are called density operators, and it is con-
ventional to use lowercase Greek letters such as ρ, ξ, and σ to denote such operators. The notation

D (X ) = {ρ ∈ Pos (X ) : Tr(ρ) = 1}

is used to denote the collection of density operators acting on a given complex Euclidean space.

1.4.6 Orthogonal projections

A positive semidefinite operator P ∈ Pos (X ) is an orthogonal projection if, in addition to being
positive semidefinite, it satisfies P2 = P. Equivalently, an orthogonal projection is any Hermitian
operator whose only eigenvalues are 0 and 1. For each subspace V ⊆ X , we write ΠV to denote
the unique orthogonal projection whose image is equal to the subspace V .

It is typically that the term projection refers to an operator A ∈ L (X ) that satisfies A2 = A,
but which might not be Hermitian. Given that there is no discussion of such operators in this
course, we will use the term projection to mean orthogonal projection.

1.4.7 Linear isometries and unitary operators

An operator A ∈ L (X ,Y) is a linear isometry if it preserves the Euclidean norm—meaning that
‖Au‖ = ‖u‖ for all u ∈ X . The condition that ‖Au‖ = ‖u‖ for all u ∈ X is equivalent to
A∗A = 1X . The notation

U (X ,Y) = {A ∈ L (X ,Y) : A∗A = 1X }



is used throughout this course. Every linear isometry preserves not only the Euclidean norm,
but inner products as well: 〈Au, Av〉 = 〈u, v〉 for all u, v ∈ X .

The set of linear isometries mapping X to itself is denoted U (X ), and operators in this set
are called unitary operators. The letters U, V, and W are conventionally used to refer to unitary
operators. Every unitary operator U ∈ U (X ) is invertible and satisfies UU∗ = U∗U = 1X , which
implies that every unitary operator is normal.

1.5 The spectral theorem

The spectral theorem establishes that every normal operator can be expressed as a linear combi-
nation of projections onto pairwise orthogonal subspaces. The spectral theorem is so-named,
and the resulting expressions are called spectral decompositions, because the coefficients of the
projections are determined by the spectrum of the operator being considered.

1.5.1 Statement of the spectral theorem and related facts

A formal statement of the spectral theorem follows.

Theorem 1.3 (Spectral theorem). Let X be a complex Euclidean space, let A ∈ L (X ) be a normal
operator, and assume that the distinct eigenvalues of A are λ1, . . . , λk. There exists a unique choice of
orthogonal projection operators P1, . . . , Pk ∈ Pos (X ), with P1 + · · ·+ Pk = 1X and PiPj = 0 for i 6= j,
such that

A =
k

∑
i=1

λiPi. (1.3)

For each i ∈ {1, . . . , k}, it holds that the rank of Pi is equal to the multiplicity of λi as an eigenvalue of A.

As suggested above, the expression of a normal operator A in the form of the above equation
(1.3) is called a spectral decomposition of A.

A simple corollary of the spectral theorem follows. It expresses essentially the same fact as
the spectral theorem, but in a slightly different form that will be useful to refer to later in the
course.

Corollary 1.4. Let X be a complex Euclidean space, let A ∈ L (X ) be a normal operator, and assume that
spec(A) = {λ1, . . . , λn}. There exists an orthonormal basis {x1, . . . , xn} of X such that

A =
n

∑
i=1

λixix∗i . (1.4)

It is clear from the expression (1.4), along with the requirement that the set {x1, . . . , xn} is an
orthonormal basis, that each xi is an eigenvector of A whose corresponding eigenvalue is λi. It is
also clear that any operator A that is expressible in such a form as (1.4) is normal—implying that
the condition of normality is equivalent to the existence of an orthonormal basis of eigenvectors.

We will often refer to expressions of operators in the form (1.4) as spectral decompositions,
despite the fact that it differs slightly from the form (1.3). It must be noted that unlike the form
(1.3), the form (1.4) is generally not unique (unless each eigenvalue of A has multiplicity one, in
which case the expression is unique up to scalar multiples of the vectors {x1, . . . , xn}).

Finally, let us mention one more important theorem regarding spectral decompositions of
normal operators, which states that the same orthonormal basis of eigenvectors {x1, . . . , xn} may
be chosen for any two normal operators, provided that they commute.



Theorem 1.5. Let X be a complex Euclidean space and let A, B ∈ L (X ) be normal operators for which
[A, B] = 0. There exists an orthonormal basis {x1, . . . , xn} of X such that

A =
n

∑
i=1

λixix∗i and B =
n

∑
i=1

µixix∗i

are spectral decompositions of A and B, respectively.

1.5.2 Functions of normal operators

Every function of the form f : C→ C may be extended to the set of normal operators in L (X ), for
a given complex Euclidean space X , by means of the spectral theorem. In particular, if A ∈ L (X )
is normal and has the spectral decomposition (1.3), then one defines

f (A) =
k

∑
i=1

f (λi)Pi.

Naturally, functions defined only on subsets of scalars may be extended to normal operators
whose eigenvalues are restricted accordingly. A few examples of scalar functions extended to
operators that will be important later in the course follow.

The exponential function of an operator

The exponential function α 7→ exp(α) is defined for all α ∈ C, and may therefore be extended to
a function A 7→ exp(A) for any normal operator A ∈ L (X ) by defining

exp(A) =
k

∑
i=1

exp(λi)Pi,

assuming that the spectral decomposition of A is given by (1.3).
The exponential function may, in fact, be defined for all operators A ∈ L (X ) by considering

its usual Taylor series. In particular, the series

exp(A) =
∞

∑
k=0

Ak

k!

can be shown to converge for all operators A ∈ L (X ), and agrees with the above notion based
on the spectral decomposition in the case that A is normal.

Non-integer powers of operators

For r > 0 the function λ 7→ λr is defined for nonnegative real values λ ∈ [0, ∞). For a given
positive semidefinite operator Q ∈ Pos (X ) having spectral decomposition (1.3), for which we
necessarily have that λi ≥ 0 for 1 ≤ i ≤ k, we may therefore define

Qr =
k

∑
i=1

λr
i Pi.

For integer values of r, it is clear that Qr coincides with the usual meaning of this expression
given by the multiplication of operators. The case that r = 1/2 is particularly common, and in



this case we also write
√

Q to denote Q1/2. The operator
√

Q is the unique positive semidefinite
operator that satisfies √

Q
√

Q = Q.

Along similar lines, for any real number r < 0, the function λ 7→ λr is defined for positive
real values λ ∈ (0, ∞). For a given positive definite operator Q ∈ Pd (X ), one defines Qr in a
similar way to above.

The logarithm of an operator

The function λ 7→ log(λ) is defined for every positive real number λ ∈ (0, ∞). For a given positive
definite operator Q ∈ Pd (X ), having a spectral decomposition (1.3) as above, one defines

log(Q) =
k

∑
i=1

log(λi)Pi.

Logarithms of operators will be important during our discussion of von Neumann entropy.
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