
Lecture 2

Countability for languages;
deterministic finite automata

The main goal of this lecture is to introduce our first model of computation, the fi-
nite automata model, but first we will finish our introductory discussion of alpha-
bets, strings, and languages by connecting them with the notion of countability.

2.1 Countability and languages

We discussed a few examples of languages last time, and considered whether or
not those languages were finite or infinite. Now let us think about the notion of
countability in the context of languages.

Languages are countable

We will begin with the following proposition.1

Proposition 2.1. For every alphabet Σ, the language Σ∗ is countable.

Let us focus on how this proposition may be proved just for the binary alphabet
Σ = {0, 1} for simplicity; the argument is easily generalized to any other alphabet.
To prove that Σ∗ is countable, it suffices to define an onto function

f : N→ Σ∗. (2.1)
1 In mathematics, names including proposition, theorem, corollary, and lemma refer to facts, and

which name you use depends on the nature of the fact. Informally speaking, theorems are important
facts that we are proud of, and propositions are also important facts, but we are embarrassed to
call them theorems because they are so easy to prove. Corollaries are facts that follow easily from
theorems, and lemmas (or lemmata for Latin purists) are boring technical facts that nobody cares
about except for the fact that they are useful for proving more interesting theorems.

11

CS 360 Introduction to the Theory of Computing

In fact, we can easily obtain a one-to-one and onto function f of this form by
considering the lexicographic ordering of strings. This is what you get by ordering
strings by their length, and using the “dictionary” ordering among strings of equal
length. The lexicographic ordering of Σ∗ begins like this:

ε, 0, 1, 00, 01, 10, 11, 000, 001, . . . (2.2)

From this ordering we can define a function f of the form (2.1) simply by setting
f (n) to be the n-th string in the lexicographic ordering of Σ∗, starting from 0. Thus,
we have

f (0) = ε, f (1) = 0, f (2) = 1, f (3) = 00, f (4) = 01, (2.3)

and so on. An explicit method for calculating f (n) is to write n + 1 in binary nota-
tion and then throw away the leading 1.

It is not hard to see that the function f is an onto function; every binary string
appears as an output value of the function f . It therefore follows that Σ∗ is count-
able. It is also the case that f is a one-to-one function, which is to say that the
lexicographic ordering provides us with a one-to-one and onto correspondence
between N and Σ∗.

It is easy to generalize this argument to any other alphabet. The first thing we
need to do is to decide on an ordering of the alphabet symbols themselves. For the
binary alphabet we order the symbols in the way we were trained: first 0, then 1. If
we started with a different alphabet, such as Γ = {♥,♦,♠,♣}, it might not be clear
how to order the symbols, and people might disagree on what ordering is best. But
it does not matter to us so long as long as we pick a single ordering and remain
consistent with it. Once we have ordered the symbols in a given alphabet Γ, the
lexicographic ordering of the language Γ∗ is defined in a similar way to what we
did above, using the ordering of the alphabet symbols to determine what is meant
by “dictionary” ordering. From the resulting lexicographic ordering we obtain a
one-to-one and onto function f : N→ Γ∗.

Remark 2.2. A brief remark is in order concerning the term lexicographic order.
Some use this term to mean something different: dictionary ordering without first
ordering strings according to length. They then use the term quasi-lexicographic or-
der to refer to what we have called lexicographic order. There is no point in worry-
ing too much about such discrepancies; there are many cases in science and math-
ematics where people disagree on terminology. What is important is that everyone
is clear about what the terminology means when it is being used. With that in
mind, in this course lexicographic order means strings are ordered first by length,
and by “dictionary” ordering among strings of the same length.

12

Lecture 2

It follows from the fact that the language Σ∗ is countable, for any choice of an
alphabet Σ, that every language A ⊆ Σ∗ is countable. This is because every subset
of a countable set is also countable. (I will leave it to you to prove this yourself. It
is a good practice problem to gain familiarity with the concept of countability.)

The set of all languages over any alphabet is uncountable

Next we will consider the set of all languages over a given alphabet. If Σ is an
alphabet, then saying that A is a language over Σ is equivalent to saying that A is
a subset of Σ∗, and being a subset of Σ∗ is the same thing as being an element of
the power set P(Σ∗). The following three statements are therefore equivalent, for
any choice of an alphabet Σ:

1. A is a language over the alphabet Σ.

2. A ⊆ Σ∗.

3. A ∈ P(Σ∗).

We have observed, for any alphabet Σ, that every language A ⊆ Σ∗ is count-
able. It is natural to ask next if the set of all languages over Σ is countable. It is not.

Proposition 2.3. Let Σ be an alphabet. The set P(Σ∗) is uncountable.

To prove this proposition, we do not need to repeat the same sort of diagonal-
ization argument used to prove that P(N) is uncountable. Instead, we can simply
combine that theorem with the fact that there exists a one-to-one and onto function
from N to Σ∗.

In greater detail, let
f : N→ Σ∗ (2.4)

be a one-to-one and onto function, such as the function we obtained earlier from
the lexicographic ordering of Σ∗. We can use this function f to define a function

g : P(N)→ P(Σ∗) (2.5)

as follows: for every A ⊆N, we define

g(A) =
{

f (n) : n ∈ A}. (2.6)

In words, the function g simply applies f to each of the elements in a given subset
of N. It is not hard to see that g is one-to-one and onto; we can express the inverse
of g directly, in terms of the inverse of f , as follows:

g−1(B) =
{

f−1(w) : w ∈ B
}

(2.7)

13

CS 360 Introduction to the Theory of Computing

for every B ⊆ Σ∗.
Now, because there exists a one-to-one and onto function of the form (2.5), we

conclude that P(N) and P(Σ∗) have the “same size.” That is, because P(N) is un-
countable, the same must be true of P(Σ∗). To be more formal about this statement,
one may assume toward contradiction that P(Σ∗) is countable, which implies that
there exists an onto function of the form

h : N→ P(Σ∗). (2.8)

By composing this function with the inverse of the function g specified above, we
obtain an onto function

g−1 ◦ h : N→ P(N), (2.9)

which contradicts what we already know, which is that P(N) is uncountable.

2.2 Deterministic finite automata

The first model of computation we will discuss in this course is a simple one,
called the deterministic finite automata model. Deterministic finite automata are also
known as finite state machines.

Remark 2.4. Computer science students at the University of Waterloo have already
encountered finite automata in a previous course (CS 241 Foundations of Sequential
Programs). Regardless of one’s prior exposure of the topic, however, it is natural to
begin with precise definitions—we need them to proceed mathematically.

Please keep in mind the following two points as you consider the definition of
the deterministic finite automata model:

1. The definition is based on sets (and functions, which can be formally described
in terms of sets, as you may have learned in a discrete mathematics course).
This is not surprising: set theory provides a foundation for much of mathemat-
ics, and it is only natural that we look to sets as we formulate definitions.

2. Although deterministic finite automata are not very powerful in computational
terms, the model is important nevertheless, and it is just the start. Do not be
bothered if it seems like a weak and useless model; we are not trying to model
general purpose computers at this stage, and the concept of finite automata is
an extremely useful one.

Definition 2.5. A deterministic finite automaton (or DFA, for short) is a 5-tuple

M = (Q, Σ, δ, q0, F), (2.10)

14

Lecture 2

q0 q1 q2

q3 q4 q5

0

1

0

1

0, 1

0, 1 0

1

0

1

Figure 2.1: The state diagram of a DFA.

where Q is a finite and nonempty set (whose elements we will call states), Σ is an
alphabet, δ is a function (called the transition function) having the form

δ : Q× Σ→ Q, (2.11)

q0 ∈ Q is a state (called the start state), and F ⊆ Q is a subset of states (whose
elements we will call accept states).

State diagrams

It is common that DFAs are expressed using state diagrams, such as this one that
appears in Figure 2.1. State diagrams express all 5 parts of the formal definition of
DFAs:

1. States are denoted by circles.

2. Alphabet symbols label the arrows.

3. The transition function is determined by the arrows, their labels, and the circles
they connect.

4. The start state is determined by the arrow coming in from nowhere.

5. The accept states are those with double circles.

For the state diagram in Figure 2.1, for example, the state set is

Q = {q0, q1, q2, q3, q4, q5}, (2.12)

15

CS 360 Introduction to the Theory of Computing

the alphabet is Σ = {0, 1}, the start state is q0, the set of accepts states is

F = {q0, q2, q5}, (2.13)

and the transition function δ : Q× Σ→ Q is as follows:

δ(q0, 0) = q0, δ(q1, 0) = q3, δ(q2, 0) = q5,
δ(q0, 1) = q1, δ(q1, 1) = q2, δ(q2, 1) = q5,
δ(q3, 0) = q3, δ(q4, 0) = q4, δ(q5, 0) = q4,
δ(q3, 1) = q3, δ(q4, 1) = q1, δ(q5, 1) = q2.

(2.14)

In order for a state diagram to correspond to a DFA, and more specifically for it
to determine a valid transition function, it must be that for every state and every
symbol, there is exactly one arrow exiting from that state labeled by that symbol.

Note, by the way, that when a single arrow is labeled by multiple symbols, such
as in the case of the arrows labeled “0, 1” in Figure 2.1, it should be interpreted that
there are actually multiple arrows, each labeled by a single symbol. This is just
a way of making our diagrams a bit less cluttered by reusing the same arrow to
express multiple transitions.

You can also go the other way and draw a state diagram from a formal descrip-
tion of a 5-tuple (Q, Σ, δ, q0, F).

DFA computations

It is easy enough to say in words what it means for a DFA to accept or reject a given
input string, particularly when we think in terms of state diagrams: we start on the
start state, follow transitions from one state to another according to the symbols of
the input string (reading one at a time, left to right), and we accept if and only if
we end up on an accept state (and otherwise we reject).

This all makes sense, but it is useful nevertheless to think about how it is ex-
pressed formally. That is, how do we define in precise, mathematical terms what it
means for a DFA to accept or reject a given string? In particular, phrases like “fol-
low transitions” and “end up on an accept state” can be replaced by more precise
mathematical notions.

Here is one way to define acceptance and rejection more formally. Notice again
that the definition focuses on sets and functions.

Definition 2.6. Let M = (Q, Σ, δ, q0, F) be a DFA and let w ∈ Σ∗ be a string. The
DFA M accepts the string w if one of the following statements holds:

1. w = ε and q0 ∈ F.

16

Lecture 2

2. w = a1 · · · an for a positive integer n and symbols a1, . . . , an ∈ Σ, and there exist
states r0, . . . , rn ∈ Q such that r0 = q0, rn ∈ F, and rk+1 = δ(rk, ak+1) for all
k ∈ {0, . . . , n− 1}.

If M does not accept w, then M rejects w.

In words, the formal definition of acceptance is that there exists a sequence of states
r0, . . . , rn such that the first state is the start state, the last state is an accept state,
and each state in the sequence is determined from the previous state and the corre-
sponding symbol read from the input as the transition function dictates: if we are
in the state q and read the symbol a, the new state becomes p = δ(q, a). The first
statement in the definition is simply a special case that handles the empty string.

It is natural to consider why we would prefer a formal definition like this to
what is perhaps a more human-readable definition. Of course, the human-readable
version beginning with “Start on the start state, follow transitions . . . ” is effective
for explaining the concept of a DFA, but the formal definition has the benefit that
it reduces the notion of acceptance to elementary mathematical statements about
sets and functions. It is also quite succinct and precise, and leaves no ambiguities
about what it means for a DFA to accept or reject.

It is sometimes useful to define a new function

δ∗ : Q× Σ∗ → Q (2.15)

recursively, based on a given transition function δ : Q× Σ→ Q, as follows:

1. δ∗(q, ε) = q for every q ∈ Q, and

2. δ∗(q, aw) = δ∗(δ(q, a), w) for all q ∈ Q, a ∈ Σ, and w ∈ Σ∗.

Intuitively speaking, δ∗(q, w) is the state you end up on if you start at state q and
follow the transitions specified by the string w.

It is the case that a DFA M = (Q, Σ, δ, q0, F) accepts a string w ∈ Σ∗ if and only
if δ∗(q0, w) ∈ F. A natural way to argue this formally, which we will not do in
detail, is to prove by induction on the length of w that δ∗(q, w) = p if and only if
one of these two statements is true:

1. w = ε and p = q.

2. w = a1 · · · an for a positive integer n and symbols a1, . . . , an ∈ Σ, and there exist
states r0, . . . , rn ∈ Q such that r0 = q, rn = p, and rk+1 = δ(rk, ak+1) for all
k ∈ {0, . . . , n− 1}.

Once that equivalence is proved, the statement δ∗(q0, w) ∈ F can be equated to M
accepting w.

17

CS 360 Introduction to the Theory of Computing

Remark 2.7. By now it is evident that we will not formally prove every statement
we make in this course. If we did, we would not have sufficient time to cover
all of the course material, and even then we might look back and feel as if we
could probably have been even more formal. If we insisting on proving everything
with more and more formality, we could in principle reduce every mathematical
claim we make to axiomatic set theory—but then we would have covered little
material about computation in a one-term course. Moreover, our proofs would
most likely be incomprehensible, and would quite possibly contain as many errors
as you would expect to find in a complicated and untested program written in
assembly language.

Naturally we will not take this path, but from time to time we will discuss the
nature of proofs, how we would formally prove something if we took the time
to do it, and how certain high-level statements and arguments could be reduced
to more basic and concrete steps pointing in the general direction of completely
formal proofs that could be verified by a computer. If you are unsure at this point
what actually constitutes a proof, or how much detail and formality you should
aim for in your own proofs, do not worry—it is one of the aims of this course to
assist in sorting this out.

Languages recognized by DFAs and regular languages

Suppose M = (Q, Σ, δ, q0, F) is a DFA. We may then consider the set of all strings
that are accepted by M. This language is denoted L(M), so that

L(M) =
{

w ∈ Σ∗ : M accepts w
}

. (2.16)

We refer to this as the language recognized by M.2 It is important to understand that
this is a single, well-defined language consisting precisely of those strings accepted
by M and not containing any strings rejected by M.

For example, here is a simple DFA over the binary alphabet Σ = {0, 1}:

q0 0, 1

If we call this DFA M, then it is easy to describe the language recognized by M:

L(M) = Σ∗. (2.17)

2 Some refer to L(M) as the language accepted by M. This terminology does have the potential to
cause confusion, though, as it overloads the term accept.

18

Lecture 2

This is because M accepts exactly those strings in Σ∗. Now, if you were to consider
a different language over Σ, such as

A = {w ∈ Σ∗ : |w| is a prime number}, (2.18)

then of course it is true that M accepts every string in A. However, M also accepts
some strings that are not in A, so A is not the language recognized by M.

We have one more definition for this lecture, which introduces some important
terminology.

Definition 2.8. Let Σ be an alphabet and let A ⊆ Σ∗ be a language over Σ. The
language A is regular if there exists a DFA M such that A = L(M).

We have not seen many DFAs thus far, so we do not have many examples of regular
languages to mention at this point, but we will see plenty of them soon enough,
and throughout the course.

Let us finish off the lecture with a question: For a given alphabet Σ, is the set of
all regular languages over the alphabet Σ countable or uncountable?

The answer is that this is a countable set. The reason is that there are countably
many DFAs over any alphabet Σ, and we can combine this fact with the observa-
tion that the function that maps each DFA to the regular language it recognizes is,
by the definition of what it means for a language to be regular, an onto function.

When we say that there are countably many DFAs, we really should be a bit
more precise. In particular, we are not considering two DFAs to be different if they
are exactly the same except for the names we have chosen to give the states. This
is reasonable because the names we choose for different states of a DFA have no
influence on the language recognized by that DFA—we may as well assume that
the state set of a DFA is Q = {q0, . . . , qm−1} for some choice of a positive integer m.
In fact, sometimes we do not even bother assigning names to states when drawing
state diagrams of DFAs, because the state names are irrelevant to the way DFAs
operates.

To see that there are countably many DFAs over a given alphabet Σ, we can use
a similar strategy to what we did when proving that the set rational numbers Q

is countable. First imagine that there is just one state: Q = {q0}. There are only
finitely many DFAs with just one state over a given alphabet Σ. (In fact there are
just two, one where q0 is an accept state and one where q0 is a reject state.) So,
we can form a finite sequence L1 of all of the DFAs having just one state. Now
consider the set of all DFAs with two states: Q = {q0, q1}. Again, there are only
finitely many, so we may take L2 to be any finite sequence of these DFAs—the or-
dering does not matter, it can be chosen arbitrarily. Continuing on like this, for any
choice of a positive integer m, there will be only finitely many DFAs with m states

19

CS 360 Introduction to the Theory of Computing

for a given alphabet Σ. The number of DFAs with m states happens to grow expo-
nentially with m, but this is not important at this moment, we just need to known
that the number is finite. Assuming that some way to order each of these finite lists
of DFAs as been chosen, we can then concatenate the lists together starting, begin-
ning with the 1 state DFAs, then the 2 state DFAs, and so on. We obtain a single
infinite sequence containing every DFA having alphabet Σ. From such a list you
can obtain an onto function from N to the set of all DFAs having alphabet Σ in a
similar way to what we did for the rational numbers.

Because there are uncountably many languages A ⊆ Σ∗, and only countably
many regular languages A ⊆ Σ∗, we can immediately conclude that some lan-
guages are not regular. This is just an existence proof, and does not give us a spe-
cific language that is not regular—it just tells us that there is one. We will see meth-
ods later that allow us to conclude that certain specific languages are not regular.

20

