
Lecture 8

The hierarchy of
Navascués, Pironio, and Acín

In this lecture, we will define and study a class of strategies for nonlocal games
known as commuting measurement strategies, or alternatively as commuting operator
strategies. These strategies include all entangled strategies, in a sense that will be
made more precise momentarily—and it was not long ago that this inclusion was
proved to be proper by Slofstra [arXiv:1606.03140]. A proof that the values defined
by the classes of entangled and commuting measurement strategies are different,
where we take the supremum winning probability over the two classes of strate-
gies, has only recently been announced by Ji, Natarajan, Vidick, Wright, and Yuen
[arXiv:2001.04383]. But be warned—the paper is over 200 pages long. This refutes
the famous Connes’ embedding conjecture from the subject of von Neumann alge-
bras, so it is worth every page it needs.

We will then analyze the semidefinite programming hierarchy of Navascués,
Pironio, and Acín, better known as the NPA hierarchy, which provides us with a
uniform family of semidefinite programs that converges to the commuting measure-
ment value of any nonlocal game. This result is, in fact, a necessary ingredient in Ji,
Natarajan, Vidick, Wright, and Yuen’s proof.

8.1 Representing and comparing strategies

Let us fix question sets X and Y, and answer sets A and B, for a nonlocal game.
It is natural to think about strategies for nonlocal games having these question

and answer sets as being represented by operators of the form

M ∈ L(RX ⊗RY, RA ⊗RB), (8.1)
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or equivalently as matrices whose columns are indexed by question pairs and
whose rows are indexed by answer pairs. To be precise, the value M(a, b|x, y) rep-
resents the probability that Alice and Bob answer the questions (x, y) with the
answer (a, b).1

This representation is nice because not only does M store the probabilities with
which Alice and Bob respond to each question pair (x, y) with answers (a, b), but
also the action of M as a linear operator has meaning. For example, assuming the
referee selects question pairs according to a probability vector π, we have that
Alice and Bob’s answers are distributed according to the vector Mπ. Perhaps more
useful is to consider the vector

v = ∑
(x,y)∈X×Y

π(x, y) |x〉 ⊗ |y〉 ⊗ |x〉 ⊗ |y〉 (8.2)

and to observe that (
M⊗ 1X×Y

)
v (8.3)

represents the joint probability distribution of quadruples (a, b, x, y) that arise from
the selection of the questions (x, y) according to π together with Alice and Bob’s
answers to those questions.

Notice also that the probability for a strategy M ∈ L(RX ⊗RY, RA ⊗RB) to
win a particular nonlocal game G = (X, Y, A, B, π, V) is equal to

∑
(x,y)∈X×Y

π(x, y) ∑
(a,b)∈A×B

V(a, b|x, y)M(a, b|x, y), (8.4)

which one may alternatively express as the inner product 〈K, M〉, where the oper-
ator K ∈ L(RX ⊗RY, RA ⊗RB) is defined as

K(a, b|x, y) = π(x, y)V(a, b|x, y) (8.5)

for all x ∈ X, y ∈ Y, a ∈ A, and b ∈ B.
Now, when we consider a particular class of strategies, such as the classical

strategies or the entangled strategies, we are effectively defining a subset

S ⊂ L(RX ⊗RY, RA ⊗RB) (8.6)

of operators that represent strategies in the class under consideration. We then
have the associated value

ωS(G) = sup
M∈S
〈K, M〉 (8.7)

of a game G for the class S.
1 Throughout the lecture, entries of operators having the form M ∈ L(RX ⊗RY, RA ⊗RB) are

expressed as M(a, b|x, y) rather than M((a, b), (x, y)), to mirror the notation we have adopted for
the referee’s predicate V(a, b|x, y).
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Figure 8.1: The 16 deterministic strategies for binary question and answer pairs.

Example 8.1. Suppose X = Y = A = B = {0, 1}. There are 16 deterministic strate-
gies for games having these question and answer sets, and they are represented by
the matrices shown in Figure 8.1.

It is natural to associate the classical strategies for these question and answer
sets with the convex hull of these 16 deterministic strategies to account for the pos-
sibility that Alice and Bob make use of randomness.

Representing the CHSH game as an operator K, as described above, yields

K =
1
4


1 1 1 0
0 0 0 1
0 0 0 1
1 1 1 0

 . (8.8)

It is now perhaps more clear by an inspection of this matrix together with those ap-
pearing in Figure 8.1 that the classical value of the CHSH game is 3/4; if M ranges
over the matrices representing deterministic strategies, it is possible to make three
of the 1s in any of these matrices, but not all four, overlap the nonzero entries of K.
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Now, if we were to represent the set of all (probabilistic) classical strategies by

P ⊂ L(RX ⊗RY, RA ⊗RB) (8.9)

and the set of all entangled strategies as

E ⊂ L(RX ⊗RY, RA ⊗RB), (8.10)

then there are various observations we could make. For example:

1. P and E are both convex sets.

2. P is a polytope.

3. P ⊆ E, and the inclusion is proper so long as X, Y, A, and B all have at least
two elements.

As special cases of (8.7) we have

ω(G) = sup
M∈P
〈K, M〉 and ω∗(G) = sup

M∈E
〈K, M〉. (8.11)

8.2 Commuting measurement strategies

Now we will introduce a new set of strategies, called commuting measurement strate-
gies. The basic idea is to drop the tensor product structure that is present in an
entangled strategy, replacing it with the assumption that Alice and Bob’s measure-
ment operators commute. We also drop the requirement that the space H is finite
dimensional.2

Definition 8.2. For a given choice of question sets X and Y and answer sets A
and B, we say that an operator M ∈ L(RX ⊗RY, RA⊗RB) represents a commuting
measurement strategy if there exists a complex Hilbert space H, a unit vector u ∈ H,
and projection operators{

Px
a : x ∈ X, a ∈ A

}
and

{
Qy

b : y ∈ Y, b ∈ B
}

(8.12)

acting on H, such that the following properties are satisfied. The projections repre-
sent measurements, in the sense that

∑
a∈A

Px
a = 1H and ∑

b∈B
Qy

b = 1H (8.13)

2If we restrict the definition to finite-dimensional H, then we obtain precisely the entangled
strategies. It is not the case, in contrast, that allowing the spaces A and B appearing in the defi-
nition of entangled strategies to be infinite dimensional makes entangled strategies equivalent to
commuting measurement strategies.
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for all x ∈ X and y ∈ Y, the two collections of projections commute in pairs,
meaning that

[
Px

a , Qy
b

]
= 0 for all x ∈ X and y ∈ Y, and we have

M(a, b|x, y) =
〈
u, Px

a Qy
bu
〉

(8.14)

for all x ∈ X, y ∈ Y, a ∈ A, and b ∈ B.

Hereafter we will write

C ⊂ L(RX ⊗RY, RA ⊗RB) (8.15)

to denote the set of all commuting measurement strategies for the question and
answer sets X, Y, A, and B. The commuting measurement value of G, which is de-
noted ωc(G), is the supremum value of the winning probability for G taken over
all commuting measurement strategies for Alice and Bob:

ωc(G) = sup
M∈C
〈K, M〉, (8.16)

assuming again that K is defined from G as in (8.5).
Here are a couple of known facts about the set C of commuting measurement

strategies and its relationship to the entangled strategies E, stated without proof:

1. C is compact and convex.

2. E ⊆ C.

Proving that C is convex and includes E is a good exercise that I will leave to you.
The fact that C is compact happens to follow from what we will prove later in the
lecture (as does convexity). The containment E ⊆ C is proper, as was mentioned at
the start of the lecture.

8.3 The NPA hierarchy

This section is devoted to a description of the semidefinite programming hierarchy
of Navascués, Pironio, and Acín—the NPA hierarchy—which is principally con-
cerned with the commuting measurement strategies. Its convergence, and what
exactly that means, will be discussed in the section following this one.

Basics of strings

When defining the NPA hierarchy in precise terms, it is helpful to make use of
some elementary concepts concerning strings of symbols. In particular, we will be
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discussing matrices and vectors whose entries are indexed by strings of varying
lengths. These concepts are elementary and quite familiar within theoretical com-
puter science, and it will take just a moment to become familiar with them in case
you are not.

Suppose that an alphabet Σ, which is a finite and nonempty set whose ele-
ments are viewed as symbols, has been fixed. A string over Σ is any finite, ordered
sequence of symbols from Σ. (Infinite sequences of symbols are not to be consid-
ered as strings.) The length of a string is the total number of symbols, counting all
repetitions, appearing in that string.

For example, if Σ = {0, 1}, then 0, 0110, and 1000100100011 are examples of
strings over Σ; the string 0 has length 1, the string 0110 has length 4, and the string
1000100100011 has length 13. There is a special string that has length 0, and this
string is called the empty string. We use the Greek letter ε to denote this string.

For every nonnegative integer n, we write Σ≤n to denote the set of all strings
having length at most n and we write Σ∗ to denote the set of all strings, of any
(finite) length, over Σ. For every alphabet Σ, the set Σ∗ is countably infinite.

Lastly, given any string s ∈ Σ∗, we let sR denote the string obtained by reversing
the ordering of the symbols in s. For example, if s = 00010, then sR = 01000.

Intuition behind the NPA hierarchy

Next, let us introduce the basic idea behind the NPA hierarchy.
When we think about a particular commuting measurement strategy, repre-

sented by a complex Hilbert space H, a unit vector u ∈ H, and collections of pro-
jection operators

{
Px

a : x ∈ X, a ∈ A
}

and
{

Qy
b : y ∈ Y, b ∈ B

}
acting on H, as

described above, our interest is naturally with the numbers

M(a, b|x, y) =
〈
u, Px

a Qy
bu
〉
, (8.17)

ranging over all x ∈ X, y ∈ Y, a ∈ A, and b ∈ B.
These numbers arise when we consider the Gram matrix of the vectors

{u} ∪
{

Px
a u : x ∈ X, a ∈ A

}
∪
{

Qy
bu : y ∈ Y, b ∈ B

}
. (8.18)

Among the entries of this matrix, one finds all of the values〈
Px

a u, Qy
bu
〉
=
〈
u, Px

a Qy
bu
〉
= M(a, b|x, y) (8.19)

that we ostensibly care about, as well as others, including (for instance)〈
Px

a u, Pz
c u
〉
,
〈
u, Qy

bu
〉
, and 〈u, u〉, (8.20)
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for appropriate choices of x, y, z, a, b, and c.
We may now think about the various properties that must hold for such a Gram

matrix, but before we do this let us discuss how we will index the entries of such
matrices. Assuming that question and answer sets X, Y, A, and B have been fixed,
we will introduce three alphabets:

ΣA = X× A, ΣB = Y× B, and Σ = ΣA t ΣB. (8.21)

Here, t denotes the disjoint union, meaning that ΣA and ΣB are to be treated as
disjoint sets when forming Σ. In words, there are |X× A|+ |Y× B| symbols in the
alphabet Σ, one symbol for each pair (x, a) ∈ X × A and a separate symbol for
each pair (y, b) ∈ Y × B. The collection of vectors (8.18) may naturally be labeled
by the set

{ε} ∪ Σ = Σ≤1, (8.22)

and so we may consider that the Gram matrix of these vectors has rows and
columns indexed by this set.

Now, supposing that

R ∈ Pos
(

CΣ≤1
)

(8.23)

is such a Gram matrix—and naturally this is a positive semidefinite matrix, as all
Gram matrices are—there are various things one may say, based on the conditions
that commuting measurement strategies must meet. In particular, we observe these
conditions:

1. R(ε, ε) = 1, given that u is a unit vector.

2. For every x ∈ X we must have

∑
a∈A

R((x, a), s) = R(ε, s) and ∑
a∈A

R(s, (x, a)) = R(s, ε), (8.24)

and likewise for every y ∈ Y we must have

∑
b∈B

R((y, b), s) = R(ε, s) and ∑
b∈B

R(s, (y, b)) = R(s, ε), (8.25)

for every s ∈ Σ≤1 (in all four equalities). These conditions reflect the fact that
summing over all operators in any given measurement yields the identity op-
erator, as in (8.13).

3. For every x ∈ X and a, c ∈ A satisfying a 6= c, we have

R((x, a), (x, c)) = 0, (8.26)

because Px
a and Px

c must be orthogonal projection operators. Similarly, for ev-
ery y ∈ Y and b, d ∈ B satisfying b 6= d, we have

R((y, b), (y, d)) = 0. (8.27)
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4. For every (z, c) ∈ Σ, we have the equality

R((z, c), (z, c)) = R(ε, (z, c)) = R((z, c), ε); (8.28)

each Px
a and Qy

b is a projection operator, thus squaring to itself.

5. For every (x, a) ∈ X× A and (y, b) ∈ Y× B we have

R((x, a), (y, b)) = R((y, b), (x, a)), (8.29)

as Px
a and Qy

b commute.

Remark 8.3. We can actually do a bit better in the case of the fifth item, and say
that every entry R((x, a), (y, b)) must be a nonnegative real number, given that

R((x, a), (y, b)) =
〈

Px
a u, Qy

bu
〉
=
∥∥Px

a Qy
bu
∥∥2, (8.30)

and likewise for R((y, b), (x, a)). This is a stronger condition than (8.29), as the en-
tries R((x, a), (y, b)) and R((y, b), (x, a)) must be equal if they are real given that R
is Hermitian. This stronger claim is not really needed though, and does not appear
in the formal description of the NPA hierarchy coming up.

Let us now take C1 to be the subset of L(RX ⊗RY, RA ⊗RB) containing all M
for which there exists a positive semidefinite operator R satisfying items 1 through
5 above, as well as

M(a, b|x, y) = R((x, a), (y, b)) (8.31)

for every x ∈ X, y ∈ Y, a ∈ A, and b ∈ B.
Observe that C ⊆ C1, as every commuting measurement strategy defines a

Gram matrix that satisfies the conditions of items 1 through 5. Thus, assuming
once again that for a given nonlocal game G = (X, Y, A, B, π, V) we have defined
K as in (8.5), we see that

ωc(G) = sup
M∈C
〈K, M〉 ≤ sup

M∈C1

〈K, M〉. (8.32)

The inclusion C ⊆ C1 is proper in general, but we can still use this relationship
to obtain upper bounds on the commuting operator value (and therefore on the
entangled value) of nonlocal games.

Now, notice that items 1 through 5 in the list above are all affine linear constraints
on R. (With the exception of R(ε, ε) = 1 they are all linear constraints.) If we define
a Hermitian operator H ∈ Herm

(
CΣ≤1)

as

H((x, a), (y, b)) = H((y, b), (x, a)) =
1
2

π(x, y)V(a, b|x, y) (8.33)
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for all x ∈ X, y ∈ Y, a ∈ A, and b ∈ B, and with all other entries equal to zero,
we see that 〈K, M〉 = 〈H, R〉. Thus, the optimization of 〈K, M〉 over all M ∈ C1 is
represented by a semidefinite program, where we optimize 〈H, R〉 over all positive
semidefinite R satisfying the affine linear constraints imposed by items 1 through
5 in the list above.

The semidefinite program just suggested is the first level of the NPA hierarchy.
The idea behind subsequent levels is to consider not just the Gram matrix of the
vectors (8.18), but of larger sets of vectors that include ones such as

Px
a Qy

bu, Px
a Qy

b Pz
c u, etc. (8.34)

This will lead us to consider operators R whose rows and columns are indexed not
by Σ≤1, but by Σ≤k for larger choices of k. (Larger choices for k yield higher levels
in the hierarchy.) Although the inner products between most pairs of these vectors
are not informative to the task of determining how well such a strategy performs
in a given nonlocal game, the benefit comes from the introduction of additional
constraints that reflect the same properties through which the five affine linear con-
straints above were derived. Indeed, the sequence of optimal values obtained from
this hierarchy always converges to ωc(G), as we will prove in the next section.

Formal description of the hierarchy

We are now ready to formally define the NPA hierarchy. We will begin by defining
an equivalence relation∼ on strings over the alphabet Σ = ΣA tΣB defined above.
This equivalence relation will be used to equate various entries in matrices that
generalize items 4 and 5 in the list described above.

Specifically, we take this equivalence relation to be the one generated by these
rules holding for every s, t ∈ Σ∗, (x, a) ∈ ΣA, and (y, b) ∈ ΣB:

1. s(x, a)t ∼ s(x, a)(x, a)t and s(y, b)t ∼ s(y, b)(y, b)t.

2. s(x, a)(y, b)t ∼ s(y, b)(x, a)t.

That is, two strings are equivalent with respect to the relation ∼ if and only if one
can be obtained from the other by any number of applications of the above rules.
These equivalences reflect the fact that projections square to themselves (the first
rule) and Alice’s measurements commute with Bob’s measurements (the second
rule).

Next, notice that the values that appear in any Gram matrix R of the form sug-
gested above always take the form〈

u, Πz1
c1 · · ·Π

zn
cn u
〉

(8.35)
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for some finite sequence of projection operators Πz1
c1 , . . . , Πzn

cn selected from Alice
and Bob’s projections.

With this observation in mind, we say that a function of the form φ : Σ∗ → C is
admissible if it satisfies these properties:

1. φ(ε) = 1.

2. For all strings s, t ∈ Σ∗ we have

∑
a∈A

φ(s(x, a)t) = φ(st) and ∑
b∈B

φ(s(y, b)t) = φ(st) (8.36)

for every x ∈ X and y ∈ Y.

3. For all strings s, t ∈ Σ∗ we have

φ(s(x, a)(x, c)t) = 0 and φ(s(y, b)(y, d)t) = 0 (8.37)

for every x ∈ X and a, c ∈ A satisfying a 6= c, and every y ∈ Y and b, d ∈ B
satisfying b 6= d, respectively.

4. For all strings s, t ∈ Σ∗ satisfying s ∼ t we have φ(s) = φ(t).

We will also consider a restriction of this notion to functions of the form

φ : Σ≤k → C, (8.38)

which we call admissible if and only if the same conditions listed above hold for
those strings s and t that are sufficiently short so that φ is defined on the arguments
indicated within each condition.

Thus, if φ is a function that is defined from an actual commuting measurement
strategy as

φ((z1, c1) · · · (zn, cn)) =
〈
u, Πz1

c1 · · ·Π
zn
cn u
〉

(8.39)

for every string (z1, c1) · · · (zn, cn), where each Πz
c denotes Pz

c or Qz
c depending on

whether (z, c) ∈ ΣA or (z, c) ∈ ΣB, respectively, then φ is necessarily admissible.
This is true for functions of both forms φ : Σ∗ → C and φ : Σ≤k → C.

Finally, a positive semidefinite operator

R ∈ Pos
(

CΣ≤k
)

(8.40)

is said to be a k-th order admissible operator if there exists an admissible function
φ : Σ≤2k → C such that

R(s, t) = φ(sRt) (8.41)

for every choice of strings s, t ∈ Σ≤k.

92



Observe that for each positive integer k, the condition that a positive semidef-
inite operator is k-th order admissible is an affine linear constraint, as there are a
finite number of affine linear constraints imposed by the equation (8.41) and the
condition that φ is admissible. Thus, the optimization over all k-th order admissi-
ble operators can be represented by a semidefinite program. This is the NPA hier-
archy, where different choices of k correspond to different levels of the hierarchy.
(Any linear objective function may naturally be considered, but often the objective
function reflects the probability to win a given nonlocal game. Alternatively, one
can set up a semidefinite program that tests whether a given M agrees with some
k-th order admissible operator.)

8.4 Convergence of the NPA hierarchy

Define Ck to be the subset of L(RX ⊗ RY, RA ⊗ RB) containing all M for which
there exists a k-th order admissible operator R ∈ Pos

(
CΣ≤k)

satisfying (8.31) for
every x ∈ X, y ∈ Y, a ∈ A, and b ∈ B. One might call any such M a k-th order
pseudo-commuting measurement strategy.

A moment’s thought reveals that

C1 ⊇ C2 ⊇ C3 ⊇ · · · (8.42)

as any (k+ 1)-st order admissible operator must yield a k-th order admissible oper-
ator when its rows and columns corresponding to strings longer than k are deleted.
It is also the case that C ⊆ Ck for every positive integer k; just like in the k = 1 case,
an actual commuting measurement strategy defines a Gram matrix R that is k-th
order admissible for every choice of k.

The remainder of the lecture is devoted to proving that the sequence (8.42) con-
verges to C in the sense made precise by the following theorem.

Theorem 8.4. Let X, Y, A, and B be finite and nonempty sets and let C and Ck, for every
positive integer k, be as defined above. It is the case that

C =
∞⋂

k=1

Ck. (8.43)

Equivalently, for every M ∈ L(RX ⊗RY, RA ⊗RB) the following two statements are
equivalent:

1. M is a commuting measurement strategy.

2. M is a k-th order pseudo-commuting measurement strategy for every positive integer k.
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The easier implication

We have already observed the implication that statement 1 implies statement 2.
In more detail, under the assumption that statement 1 holds, it must be that M is
defined by a commuting measurement strategy in which Alice and Bob’s projective
measurements are described by {Px

a : a ∈ A} for Alice and {Qy
b : b ∈ B} for Bob,

with all of these projections acting on a Hilbert space H, along with a unit vector
u ∈ H. As before, let Πz

c denote Pz
c if z ∈ X and c ∈ A, or Qz

c if z ∈ Y and c ∈ B.
With respect to this notation, one may consider the k-th order admissible operator
R defined by

R(s, t) = φ(sRt), (8.44)

where the function φ is defined as

φ
(
(z1, c1) · · · (zj, cj)

)
=
〈
u, Πz1

c1 · · ·Π
zj
cj u
〉

(8.45)

for every string (z1, c1) · · · (zj, cj) ∈ Σ≤2k. A straightforward verification reveals
that this operator is consistent with M, in the sense of (8.31), and therefore M is a
k-th order pseudo-commuting measurement strategy.

A bound on entries of any k-th order admissible operator

Before approaching the more challenging implication of Theorem 8.4, which is that
statement 2 implies statement 1, we will prove that every entry of a k-th order
admissible operator is bounded by 1 in absolute value.

More explicitly, if R ∈ Pos
(
CΣ≤k)

is k-th order admissible, then∣∣R(s, t)
∣∣ ≤ 1 (8.46)

for every s, t ∈ Σ≤k. To see that this is so, observe first that∣∣R(s, t)
∣∣ ≤ √R(s, s)

√
R(t, t) (8.47)

for each s, t ∈ Σ∗, which is a consequence of the fact that each 2 × 2 principal
submatrix (

R(s, s) R(s, t)

R(t, s) R(t, t)

)
(8.48)

must be positive semidefinite. Noting that R(s, s) is real and nonnegative, it there-
fore suffices to prove that

R(s, s) ≤ 1 (8.49)

for every s ∈ Σ≤k.
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The bound (8.49) may be proved by induction on the length of s. For the base
case, one has that R(ε, ε) = 1. For the general case, one has that for any string
s ∈ Σ∗ and any choice of (z, c) ∈ Σ, it holds that

R((z, c)s, (z, c)s) ≤∑
d

R((z, d)s, (z, d)s) = ∑
d

φ(sR(z, d)(z, d)s)

= ∑
d

φ(sR(z, d)s) = φ(sRs) = R(s, s),
(8.50)

where φ : Σ≤2k → C is the admissible function from which R is defined, and
the sums are over all d ∈ A or d ∈ B, depending on whether z ∈ X or z ∈ Y,
respectively. By the hypothesis of induction the required bound (8.49) follows.

Entry-wise convergence to an admissible matrix

Now assume statement 2 of Theorem 8.4 holds. For every k ≥ 1, let

Rk ∈ Pos
(

CΣ≤k
)

(8.51)

be a k-th order admissible operator satisfying

M(a, b|x, y) = Rk((x, a), (y, b)) (8.52)

for every x ∈ X, y ∈ Y, a ∈ A, and b ∈ B, and let φk : Σ≤2k → C be the admissible
function that defines Rk.

We will begin with the observation that there exists an infinite matrix

R : Σ∗ × Σ∗ → C (8.53)

having the following properties:

1. Every finite principal submatrix of R is positive semidefinite.

2. M(a, b|x, y) = R((x, a), (y, b)) for every x ∈ X, y ∈ Y, a ∈ A, and b ∈ B.

3. There exists an admissible function φ : Σ∗ → C such that R(s, t) = φ(sRt) for
all s, t ∈ Σ∗.

Note here that we must draw a distinction between an infinite matrix of the form
(8.53) and a linear operator, as these concepts are no longer equivalent in infinite
dimensions.

Such an infinite matrix R can, in fact, be obtained in a fairly straightforward
fashion. Observe first that for every string s ∈ Σ∗ and every infinite, strictly in-
creasing sequence of positive integers (k1, k2, k3, . . .), the sequence

(φk1(s), φk2(s), φk3(s), . . .) (8.54)
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must have at least one limit point.3 This is because each value φk(s) agrees with an
entry of Rk, and the entries of each operator Rk are bounded by 1 in absolute value.

Beginning with the string s = ε and the sequence (k1, k2, . . .) = (1, 2, . . .), we
consider the function φ : Σ∗ → C defined by the following process:

1. Define φ(s) to be any limit point of the sequence (8.54).

2. Restrict the sequence (k1, k2, . . .) to any infinite subsequence for which (8.54)
converges to the chosen limit point, and rename the indices forming this sub-
sequence as (k1, k2, k3, . . .).

3. Increment s and return to step 1.

Here, when we say “increment s,” we are referring to any fixed total ordering of
Σ∗ for which ε is the first string. For example, the strings in Σ∗ may be ordered
according to their length, with strings of equal length being ordered according to
the natural “dictionary ordering” induced by a fixed ordering of Σ (which is the so-
called lexicographic ordering of Σ∗). It must be that any function φ obtained through
this process is admissible, by virtue of the fact that every φk is admissible.

Now we may define
R(s, t) = φ(sRt). (8.55)

The three properties required of R follow, either directly or from the recognition
that every finite submatrix of R is equal to the limit of the corresponding subma-
trices of some convergent subsequence of the sequence

(R1, R2, R3, . . .) (8.56)

together with the fact that the positive semidefinite cone is closed.

Construction of a commuting measurement strategy

We will now make use of a fact concerning countably infinite matrices for which
all finite principal submatrices are positive semidefinite—and that is that any such
matrix must be the Gram matrix of a countably infinite set of vectors chosen from
some Hilbert space. This is not a trivial fact to prove, but we will take it as given.
In the case at hand, this implies that there must exist a Hilbert space K and a
collection of vectors {

us : s ∈ Σ∗
}
⊂ K, (8.57)

such that
R(s, t) =

〈
us, ut

〉
(8.58)

3When considering the sequence (8.54), we ignore those indices k for which φk(s) is not defined,
of which there are at most finitely many.
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for every s, t ∈ Σ∗. (The inner product is, naturally, the inner product on K.)
Now let us take H to be the closure of the span of the set {us : s ∈ Σ∗}, which

is a Hilbert space having countable dimension (and is therefore a separable Hilbert
space). We will define a commuting measurement strategy for Alice and Bob, with
H being the Hilbert space for this strategy. The unit vector associated with this
strategy will be uε ∈ H, which is indeed a unit vector given that

〈uε, uε〉 = R(ε, ε) = 1. (8.59)

Next we define a collection of projections on H. For each choice of x ∈ X and
a ∈ A, define Px

a to be the projection onto the orthogonal complement of the set{
u(x,c)s : c ∈ A\{a}, s ∈ Σ∗

}
, (8.60)

and along similar lines, for each choice of y ∈ Y and b ∈ B, define Qy
b to be the

projection onto the orthogonal complement of the set{
u(y,d)s : d ∈ B\{b}, s ∈ Σ∗

}
. (8.61)

(The orthogonal complement of any collection of vectors is closed, so these are
well-defined projection operators.)

In order to verify that the objects just defined induce a valid commuting mea-
surement strategy that agrees with M, we will first prove the following useful fact.
For all (x, a) ∈ X× A, (y, b) ∈ Y× B, and s ∈ Σ∗, it is the case that

Px
a us = u(x,a)s and Qy

bus = u(y,b)s. (8.62)

Note first that for any choice of x ∈ X, a, c ∈ A with a 6= c, and s, t ∈ Σ∗, we have〈
u(x,a)s, u(x,c)t

〉
= R((x, a)s, (x, c)t) = φ

(
sR(x, a)(x, c)t

)
= 0, (8.63)

and similarly for any choice of y ∈ Y, b, d ∈ B with b 6= d, and s, t ∈ Σ∗, we have〈
u(y,b)s, u(y,d)t

〉
= 0. (8.64)

This implies that

Px
a u(x,a)s = u(x,a)s and Qy

bu(y,b)s = u(y,b)s. (8.65)

We also see that for any choice of x ∈ X and s, t ∈ Σ∗,

∑
a∈A

〈
ut, u(x,a)s

〉
= ∑

a∈A
R(t, (x, a)s)

= ∑
a∈A

φ(tR(x, a)s) = φ(tRs) = R(t, s) =
〈
ut, us

〉
,

(8.66)
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from which it follows that
us = ∑

a∈A
u(x,a)s. (8.67)

Similarly, for any choice of y ∈ Y and s ∈ Σ∗,

us = ∑
b∈B

u(y,b)s. (8.68)

Consequently,
Px

a us = ∑
c∈A

Px
a u(x,c)s = Px

a u(x,a)s = u(x,a)s, (8.69)

and by similar reasoning
Qy

bus = u(y,b)s, (8.70)

as claimed.
With the formulas (8.62) in hand, we can verify the required properties of H,

uε, {Px
a }, and {Qy

b}. First, see that〈
us, Px

a Qy
but
〉
=
〈
us, u(x,a)(y,b)t

〉
= φ

(
sR(x, a)(y, b)t

)
= φ

(
sR(y, b)(x, a)t

)
=
〈
us, u(y,b)(x,a)t

〉
=
〈
us, Qy

b Px
a ut
〉 (8.71)

for every s, t ∈ Σ∗. This implies that Px
a and Qy

b commute on the span of the vectors
{us : s ∈ Σ∗}, and it follows that they commute on all of H by continuity. Second,
for every x ∈ X and s ∈ Σ∗ we find that

∑
a∈A

Px
a us = ∑

a∈A
u(x,a)s = us, (8.72)

from which it follows (again by continuity) that

∑
a∈A

Px
a = 1H (8.73)

and similarly
∑
b∈B

Qy
b = 1H. (8.74)

To complete the proof, it remains to observe that the strategy represented by
the unit vector uε and the projections {Px

a } and {Qy
b} yields the strategy M. This is

also evident from the formulas (8.62), as one has

R((x, a), (y, b)) =
〈
u(x,a), u(y,b)

〉
=
〈
uε, Px

a Qy
buε

〉
(8.75)

and therefore
M(a, b|x, y) =

〈
uε, Px

a Qy
buε

〉
(8.76)

for every choice of x ∈ X, y ∈ Y, a ∈ A, and b ∈ B.
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Two implications

We will conclude the lecture by briefly observing two facts that follow from Theo-
rem 8.4. The first is that the set C of commuting measurement strategies is closed,
as it is the intersection of the closed sets C1, C2, . . . (and, by similar reasoning, it
is convex). The second fact is that there is no loss of generality in restricting one’s
attention to separable Hilbert spaces in the definition of commuting measurement
strategies, for this is so for the strategy constructed in the proof.
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