
Lecture 5

Min-relative entropy, conditional
max-entropy, and hypothesis-testing
relative entropy

In this lecture we will discuss a few additional generalized entropy measures,
namely the min-relative entropy, the conditional max-entropy, and the hypothesis-
testing relative entropy. We will discuss various properties of these quantities, and
relate them to the other entropic quantities we have previously discussed.

5.1 Min-relative entropy

We will begin with the min-relative entropy.

Definition 5.1 (Quantum min-relative entropy). Let ρ ∈ D(X) be a density oper-
ator and let Q ∈ Pos(X) be a positive semidefinite operator, for X a complex Eu-
clidean space. The quantum min-relative entropy (or min-relative entropy, for short)
of ρ with respect to Q is defined as

Dmin(ρ‖Q) = − log
(
F(ρ, Q)2), (5.1)

where

F(ρ, Q) =
∥∥∥√ρ

√
Q
∥∥∥

1
(5.2)

is the fidelity between ρ and Q.

Remark 5.2. In the case that F(ρ, Q) = 0, which is equivalent to im(ρ) ⊥ im(Q),
one is to interpret that Dmin(ρ‖Q) = ∞.
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Elementary observations

Here are a couple of relevant properties of the min-relative entropy that follow
directly from known properties of the fidelity function.

1. A variant of Klein’s inequality holds for the min-relative entropy. That is, if
ρ, σ ∈ D(X) are density operators, then Dmin(ρ‖σ) ≥ 0, with equality if and
only if ρ = σ.

2. The min-relative entropy is monotonic with respect to the action of channels.
That is, for every choice of ρ ∈ D(X), Q ∈ Pos(X), and Φ ∈ C(X,Y), it is the
case that

Dmin(Φ(ρ)‖Φ(Q)) ≤ Dmin(ρ‖Q).

This is true, in fact, for all positive and trace-preserving maps Φ ∈ T(X,Y).

One can identify additional properties of the min-relative entropy through its very
direct connection to the fidelity function, which we know to have many interesting
and remarkable properties.

Relationship to the quantum relative entropy

The following theorem reveals that the min-relative entropy is upper-bounded by
the ordinary quantum relative entropy.

Theorem 5.3. Let ρ ∈ D(X) be a density operator and let Q ∈ Pos(X) be a positive
semidefinite operator, for X a complex Euclidean space. It is the case that

Dmin(ρ‖Q) ≤ D(ρ‖Q). (5.3)

Proof. The theorem is trivial in the case im(ρ) 6⊆ im(Q), as the right-hand side of
(5.3) is infinite in this case, so the remainder of the proof is focused on the case
im(ρ) ⊆ im(Q). There is no loss of generality in assuming that Q is positive defi-
nite in this case, as the values of Dmin(ρ‖Q) and D(ρ‖Q) then do not change if X
is replaced by im(Q).

Define a function φ : (−1, 1)→ R as

φ(α) = − ln Tr(ρ1−αQα). (5.4)

We are using the natural logarithm because it will simplify the calculus that will
soon be considered. It is not really important to the proof that this function is de-
fined on the entire interval (−1, 1), we only require that the function is defined on
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the interval [0, 1/2] and is differentiable at α = 0. But, in any case, φ is differen-
tiable at every point α ∈ (−1, 1), with the derivative being given by

φ′(α) =
Tr
(
ρ1−αQα(ln(ρ)− ln(Q))

)
Tr
(
ρ1−αQα

) . (5.5)

Notice in particular that

φ′(0) = Tr(ρ ln(ρ))− Tr(ρ ln(Q)) =
1

log(e)
D(ρ‖Q). (5.6)

We also observe that

φ(1/2) = − ln Tr
(√

ρ
√

Q
)
≥ 1

2 log(e)
Dmin(ρ‖Q) (5.7)

with the inequality following from

F(ρ, Q) =
∥∥∥√ρ

√
Q
∥∥∥

1
≥ Tr

(√
ρ
√

Q
)

. (5.8)

Finally, noting that φ(0) = 0, we see that the theorem will follow from a demon-
stration that

φ′(0) ≥ φ(1/2)− φ(0)
1/2

. (5.9)

This in turn will follow from a demonstration that φ is a concave function.
To prove that φ is concave, it suffices to compute its second derivative and

observe that its value is non-positive. To make this as simple as possible, and to
avoid a messy calculation, let us use the spectral theorem to write

ρ = ∑
a∈Σ

p(a)xax∗a and Q = ∑
b∈Γ

q(b)yby∗b (5.10)

for alphabets Σ and Γ, orthonormal sets {xa : a ∈ Σ} and {yb : b ∈ Γ}, a proba-
bility vector p ∈ P(Σ), and q ∈ (0, ∞)Γ being a vector of positive real numbers. Let
us also define a function

ra,b(α) =
|〈xa, yb〉|2p(a)1−αq(b)α

Tr(ρ1−αQα)
(5.11)

for every (a, b) ∈ Σ× Γ and α ∈ (−1, 1), so that

φ′(α) = ∑
(a,b)∈Σ×Γ

ra,b(α)
(
ln(p(a))− ln(q(b))

)
. (5.12)
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We may then express the second derivative of φ as

φ′′(α) =

(
∑

(a,b)∈Σ×Γ
ra,b(α)

(
ln(p(a))− ln(q(b))

))2

− ∑
(a,b)∈Σ×Γ

ra,b(α)
(
ln(p(a)− ln(q(b))

)2.
(5.13)

Observing that ra,b(α) ≥ 0 and

∑
(a,b)∈Σ×Γ

ra,b(α) = 1 (5.14)

for every α ∈ (−1, 1), we find that φ′′(α) is non-positive by Jensen’s inequality,
which completes the proof.

5.2 Conditional max-entropy

Next we will discuss the conditional max-entropy, which is defined through the
min-relative entropy in precisely the same way that the conditional min-entropy is
defined through the max-relative entropy.

Definition 5.4 (Conditional max-entropy). Let ρ ∈ D(X⊗ Y) be a state of a pair of
registers (X,Y). The conditional max-entropy of X given Y for the state ρ is defined
as

Hmax(X|Y)ρ = − inf
σ∈D(Y)

Dmin(ρ‖1X ⊗ σ). (5.15)

Equivalently,
Hmax(X|Y)ρ = sup

σ∈D(Y)

log
(
F(ρ,1X ⊗ σ)2). (5.16)

We obtain from Theorem 5.3 that H(X|Y)ρ ≤ Hmax(X|Y)ρ, and so

Hmin(X|Y)ρ ≤ H(X|Y)ρ ≤ Hmax(X|Y)ρ. (5.17)

Writing n = dim(X) and ω = 1X/n, we see from the definition of the conditional
max-entropy that

Hmax(X|Y)ρ = log(n) + sup
σ∈D(Y)

log
(
F(ρ, ω⊗ σ)2). (5.18)
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Semidefinite program for conditional max-entropy

One way to compute the value Hmax(X|Y)ρ is to use the semidefinite program for
the fidelity function that was discussed in CS 766/QIC 820, obtaining the following
semidefinite program.

Optimization Problem 5.5 (SDP for conditional max-entropy)

Primal problem

maximize:
1
2

Tr(X) +
1
2

Tr(X∗)

subject to:
(

ρ X
X∗ 1X ⊗ σ

)
≥ 0,

X ∈ L(X⊗ Y),

σ ∈ D(Y)

Dual problem

minimize:
1
2
〈ρ, Y〉+ 1

2
λ1(TrX(Z))

subject to:
(

Y −1X⊗Y
−1X⊗Y Z

)
≥ 0,

Y, Z ∈ Pos(X⊗ Y).

It is the case that
Hmax(X|Y)ρ = 2 log(α), (5.19)

for
α = sup

σ∈D(Y)

F(ρ,1X ⊗ σ) (5.20)

being the optimal value of this semidefinite program.

Remark 5.6. The dual problem may be simplified to obtain the expression

α = inf
Z>0

(
〈ρ, Z〉

2
+
‖TrX(Z−1)‖

2

)
(5.21)

for the optimal value of Optimization Problem 5.5. Using the arithmetic-geometric
mean inequality, one may conclude that

Hmax(X|Y)ρ = inf
Z>0

(
log〈ρ, Z〉+ log‖TrX(Z−1)‖

)
(5.22)

Examples

We may again consider a few examples of classes of states, to gain some intuition
on the conditional max-entropy.

Example 5.7. For any choice of σ ∈ D(X) and ξ ∈ D(Y), it is the case that

Hmax(X|Y)σ⊗ξ = 2 log Tr
√

σ. (5.23)
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Example 5.8. Calculating the conditional max-entropy Hmax(X|Y)ρ for a classical-
quantum state ρ of the form

ρ =
n

∑
k=1

pk |k〉〈k| ⊗ ξk (5.24)

yields

Hmax(X|Y)ρ = log sup
σ∈D(Y)

(
n

∑
k=1

√
pk F(ξk, σ)

)2

. (5.25)

Example 5.9. Let n = dim(X), let

τ =
1
n

n

∑
a,b=1
|a〉〈b| ⊗ |a〉〈b| (5.26)

and suppose that τ can be recovered perfectly by applying a channel locally to Y

for the state ρ ∈ D(X⊗ Y). This is equivalent to ρ taking the form

ρ = (1X ⊗V)(τ ⊗ ξ)(1X ⊗V)∗ (5.27)

for some choice of a density operator ξ ∈ D(Z) and an isometry V ∈ U(X⊗ Z,Y).
Then we have

Hmax(X|Y)ρ = − log(n), (5.28)

just like the conditional min-entropy and conditional quantum entropy.

A relationship between conditional min- and max-entropy

We will now prove a fundamental relationship between conditional min- and max-
entropy, which is stated in the following theorem.

Theorem 5.10. Let X, Y, and Z be registers and assume the triple (X,Y,Z) is in a pure
state uu∗, for u ∈ X⊗ Y⊗ Z a unit vector. It is the case that

Hmin(X|Y) + Hmax(X|Z) = 0. (5.29)

Proof. First let us prove
2−Hmin(X|Y) ≤ 2Hmax(X|Z). (5.30)

Let
ρ = TrZ(uu∗) (5.31)

and choose Φ ∈ C(Y,X) to be a channel for which

2−Hmin(X|Y) = F
(
(1L(X) ⊗Φ)(ρ), vec(1X) vec(1X)∗

)2. (5.32)
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Among the many nice properties that the fidelity function possesses is the fact that
if Q0, Q1 ∈ Pos(U) and P0 ∈ Pos(U⊗ V) satisfies TrV(P0) = Q0, then

F(Q0, Q1) = max
{

F(P0, P1) : P1 ∈ Pos(U⊗ V), TrV(P1) = Q1
}

. (5.33)

From this fact we find that

2−Hmin(X|Y) = F
((
1L(X) ⊗Φ⊗ 1L(Z)

)
(uu∗), vec(1X) vec(1X)∗ ⊗ σ

)2 (5.34)

for some state σ ∈ D(Z), as operators of the form vec(1X) vec(1X)∗ ⊗ σ are the
only operators that leave vec(1X) vec(1X)∗ when Z is traced out. The fidelity is
nondecreasing under the partial trace on the second tensor factor of X, and there-
fore

2−Hmin(X|Y) ≤ F
(
TrY(uu∗),1X ⊗ σ

)2 ≤ 2Hmax(X|Z). (5.35)

Now let us prove the reverse inequality

2Hmax(X|Z) ≤ 2−Hmin(X|Y), (5.36)

which is based on a similar idea. Choose a density operator σ ∈ D(Z) so that

2Hmax(X|Z) = F
(
TrY(uu∗),1X ⊗ σ

)2. (5.37)

The operator 1X ⊗ σ can be purified as

vec
(
1X ⊗

√
σ
)

vec
(
1X ⊗

√
σ
)∗ ∈ Pos(X⊗ Z⊗X⊗ Z). (5.38)

Every extension of TrY(uu∗) to an element of Pos(X⊗Z⊗X⊗Z) can be expressed
as (

1L(X) ⊗ Ξ⊗ 1L(Z)
)
(uu∗) (5.39)

for a channel Ξ ∈ C(Y,Z⊗ X), meaning that these are exactly the operators that
leave TrY(uu∗) when the first tensor factor of Z and the second tensor factor of X
are traced out. By the same fact regarding the fidelity function from before, we find
that

2Hmax(X|Z) = F
((
1L(X) ⊗ Ξ⊗ 1L(Z)

)
(uu∗), vec

(
1X ⊗

√
σ
)

vec
(
1X ⊗

√
σ
)∗)2 (5.40)

for some choice of a channel Ξ ∈ C(Y,Z⊗X). Because the fidelity is nondecreasing
under the partial trace on both copies of Z, we obtain

2Hmax(X|Z) ≤ F
((
1L(X) ⊗Φ

)
(TrZ(uu∗)), vec

(
1X
)

vec
(
1X
)∗)2 (5.41)

for Φ = TrZ ◦ Ξ ∈ C(Y,X). This implies

2Hmax(X|Z) ≤ 2−Hmin(X|Y), (5.42)

as required.

51



5.3 Hypothesis-testing relative entropy

We will define the hypothesis-testing relative entropy as follows.

Definition 5.11. Let ρ ∈ D(X), Q ∈ Pos(X), and ε ∈ [0, 1]. The ε-hypothesis-testing
relative entropy of ρ with respect to Q is defined as

Dε
H(ρ‖Q) = − inf

{
log〈Q, X〉 : X ∈ Pos(X), 〈ρ, X〉 ≥ 1, εX ≤ 1

}
. (5.43)

Elementary observations

Before we try to understand the intuitive meaning of this quantity, let us note a
few simple things about it.

First, we see that Dε
H(ρ‖Q) = ∞ is possible:

1. D0
H(ρ‖Q) = ∞ if and only if im(ρ) 6⊆ im(Q).

2. For ε ∈ (0, 1) we have Dε
H(ρ‖Q) = ∞ if and only if〈

Πker(Q), ρ
〉
≥ ε. (5.44)

3. D1
H(ρ‖Q) = ∞ if and only if im(ρ) ⊥ im(Q).

Next, notice that as ε decreases, the infimum decreases, because decreasing ε

means relaxing the constraint εX ≤ 1, and therefore the ε-hypothesis-testing rel-
ative entropy increases: δ ≤ ε implies Dδ

H(ρ‖Q) ≥ Dε
H(ρ‖Q). Stated another way,

taking ε to be smaller means taking the ε-hypothesis-testing relative entropy to
be a stronger notion of divergence. (The same may be said about the ε-smoothed
max-relative entropy.)

Continuing on, although our primary focus will be on the range of values
ε ∈ (0, 1), we will take a moment to consider the extreme cases ε = 0 and ε = 1. If
it is the case that ε = 0, the constrain εX ≤ 1 is trivially satisfied. We obtain pre-
cisely the max-relative entropy, as an examination of the dual form of Optimization
Problem 2.4 reveals:

D0
H(ρ‖Q) = Dmax(ρ‖Q). (5.45)

At the other extreme, we may consider ε = 1, so that the constraint εX ≤ 1 becomes
X ≤ 1. The infimum is evidently achieved for X = Πim(ρ), and so we obtain

D1
H(ρ‖Q) = − log

〈
Q, Πim(ρ)

〉
. (5.46)

This quantity has also been called the min-relative entropy by some, but obviously
we will not use this name given that we have already used it for something else—
the name 1-hypothesis-testing relative entropy will do just fine.
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Semidefinite programming characterization

The definition of the hypothesis-testing relative entropy immediately suggests a
semidefinite programming characterization. Specifically, the value Dε

H(ρ‖Q) is the
negative logarithm of the optimal value of the following semidefinite program.

Optimization Problem 5.12 (SDP for hypothesis-testing relative entropy)

Primal problem

minimize: 〈Q, X〉
subject to: 〈ρ, X〉 ≥ 1,

εX ≤ 1,

X ∈ Pos(X).

Dual problem

maximize: λ− Tr(Y)
subject to: λρ ≤ Q + εY,

Y ∈ Pos(X),

λ ≥ 0.

The primal problem is strictly feasible provided that ε ∈ [0, 1). In particular,

X =

{
(1+ε)1

2ε if ε ∈ (0, 1)

21 if ε = 0
(5.47)

is strictly primal feasible. Strict primal feasibility is, on the other hand, impossible
when ε = 1. The dual problem is strictly feasible when ε ∈ (0, 1], by λ = 1 and
Y = 21/ε for instance. In the case ε = 0, the dual problem is strictly feasible if and
only if im(ρ) ⊆ im(Q).

Therefore, strong duality holds and the optimal values are achieved for all
choices of ρ and Q when ε ∈ (0, 1), by Slater’s theorem. We also have strong duality
and an optimal value achieved in the primal problem when ε = 1, again by Slater’s
theorem, as X = 1 is primal feasible (although not strictly so); and strong duality
also holds in the case ε = 0, as our examination of Optimization Problem 2.4 has
already revealed.

Interpretation

One way to interpret the ε-hypothesis-testing relative entropy, at least in the case
ε > 0, begins with observation that

Dε
H(ρ‖Q) = − inf

{
log
〈Q, P〉

ε
: 0 ≤ P ≤ 1, 〈ρ, P〉 ≥ ε

}
. (5.48)

For the sake of the discussion that follows, let us consider the case that Q = σ is a
density operator.
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We can now consider a test being performed that aims to distinguish between
the states ρ and σ. Think of σ as representing an idealized model for a state, corre-
sponding to the null-hypothesis of the test being performed, whereas ρ is the actual
state of the system being tested. The operator P may be associated with a mea-
surement operator, the outcome corresponding to which is to be seen as a signal
supporting an alternative hypothesis. If we were to measure ρ with respect to such
a measurement, the alternative hypothesis may not be signaled with high prob-
ability, but the probability is at least ε. Think of the probability ε as representing
how small of a signal one is willing to tolerate in support of an alternative hypoth-
esis. The value 2−Dε

H(ρ‖Q) is then equal to the smallest possible value for 〈Q, P〉/ε

that we could achieve by selecting P optimally. Informally speaking, Dε
H(ρ‖σ) is a

measure of how surprising it would be to obtain the outcome corresponding to P
in the idealized case represented by σ.

The precise scaling in the definition above has been selected so that a variant of
Klein’s inequality holds, provided ε ∈ [0, 1). That is, for all ε ∈ [0, 1) it is the case
that Dε

H(ρ‖σ) ≥ 0, with equality if and only if ρ = σ. Indeed, if σ 6= ρ, we may
choose a unit vector u for which 〈uu∗, ρ〉 > 〈uu∗, σ〉, and then consider

X = (1− δ)1+
δ

〈uu∗, ρ〉 uu∗ (5.49)

in the primal problem, for δ ∈ (0, 1). The operator X is clearly positive semidefi-
nite, and it is the case that 〈σ, X〉 < 〈ρ, X〉 = 1. The constraint εX ≤ 1 is satisfied
so long as

1− δ +
δ

〈uu∗, ρ〉 ≤
1
ε

, (5.50)

which is so for all sufficiently small δ, as 1/ε is strictly larger than 1 by the as-
sumption ε < 1. By selecting any such δ, one obtains a primal feasible X having
objective value strictly smaller than 1, which implies that Dε

H(ρ‖σ) is positive. In
the case ε = 1, one has D1

H(ρ‖σ) = 0 if and only if im(σ) ⊆ im(ρ).

Monotonicity under the action of channels

Suppose that Φ is a trace-preserving and positive map. Consider the dual form of
Optimization Problem 5.12. If it is the case that λ ≥ 0 and Y ∈ Pos(X) satisfy the
constraint

λρ ≤ Q + εY, (5.51)

then by the positivity of Φ it must also hold that

λΦ(ρ) ≤ Φ(Q) + εΦ(Y), (5.52)
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and therefore (λ, Φ(Y)) is dual-feasible for the instance of this problem corre-
sponding to Dε

H(Φ(ρ)‖Φ(Q)), with the same objective value being achieved by
the assumption that Φ preserves trace. It follows that

2−Dε
H(Φ(ρ)‖Φ(Q)) ≥ 2−Dε

H(ρ‖Q), (5.53)

or, equivalently,
Dε

H(Φ(ρ)‖Φ(Q)) ≤ Dε
H(ρ‖Q). (5.54)

Relationship to smoothed max-relative entropy

We will conclude our discussion of the hypothesis-testing relative entropy by ob-
serving its close relationship to the smoothed max-relative entropy. The two theo-
rems that follow reveal this close relationship.

Recall that Dε
max(ρ‖Q) is the logarithm of the optimal value of this conic pro-

gram:

Optimization Problem 5.13 (SDP for smoothed max-relative entropy)

Primal problem

minimize: η

subject to: ξ ≤ ηQ
ξ ∈ Bε(ρ),

η ≥ 0

Dual problem

maximize: ψε
ρ(Z)

subject to: 〈Q, Z〉 ≤ 1

Z ∈ Pos(X)

where
ψε

ρ(Z) = inf
ξ∈Bε(ρ)

〈ξ, Z〉. (5.55)

In the theorems that follow, we will again use trace-distance smoothing, as we
did in Lecture 4:

Bε(ρ) =
{

ξ ∈ D(X) : 1
2‖ρ− ξ‖1 ≤ ε

}
. (5.56)

Theorem 5.14. Let ρ ∈ D(X) and Q ∈ Pos(X) be operators satisfying im(ρ) ⊆ im(Q)
and let ε ∈ (0, 1). It is the case that

D
√

ε
max(ρ‖Q) ≤ Dε

H(ρ‖Q) + log
( 1

ε(1− ε)

)
. (5.57)

Proof. Consider any operator Z ∈ Pos(X) that satisfies 〈Q, Z〉 ≤ 1, and let

Z =
n

∑
k=1

λk(Z) zkz∗k (5.58)
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be a spectral decomposition of Z. We will use the basis {z1, . . . , zn} to construct a
family of feasible solutions X to the primal form of Optimization Problem 5.12.

In particular, for each real number λ ∈ R, define a subset Sλ ⊆ {1, . . . , n} as

Sλ =
{

k ∈ {1, . . . , n} :
〈
zkz∗k , ρ− 2λQ

〉
> 0

}
, (5.59)

and define
Πλ = ∑

k∈Sλ

zkz∗k . (5.60)

Observe that 〈
Πλ, ρ

〉
≥ 2λ

〈
Πλ, Q

〉
, (5.61)

with the equality being strict so long as Πλ is nonzero. The operator

X =
Πλ

ε
(5.62)

is therefore feasible for primal form of Optimization Problem 5.12 provided that
〈Πλ, ρ〉 ≥ ε, and with this observation in mind it is informative to consider the
supremum over all such values of λ:

γ = sup
{

λ ∈ R : 〈Πλ, ρ〉 ≥ ε
}

. (5.63)

In particular, for every δ > 0 we see that the operator

X =
Πγ−δ

ε
(5.64)

is primal feasible, and so we obtain the inequalities

2−Dε
H(ρ‖Q) ≤

〈Q, Πγ−δ〉
ε

≤ 2−γ+δ

ε
〈ρ, Πγ−δ〉 ≤

2−γ+δ

ε
. (5.65)

As these inequalities hold for every δ > 0, it follows that

Dε
H(ρ‖Q) ≥ γ + log(ε). (5.66)

On the other hand, for any choice of δ > 0, it must be that 〈Πγ+δ, ρ〉 < ε. The
density operator

ξ =
(1−Πγ+δ)ρ(1−Πγ+δ)

〈1−Πγ+δ, ρ〉 (5.67)

therefore satisfies
F(ρ, ξ) ≥

√
1− ε (5.68)
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by Winter’s gentle measurement lemma, which implies that

1
2
‖ρ− ξ‖1 ≤

√
ε (5.69)

by one of the Fuchs–van de Graaf inequalities. Consequently,

ψ
√

ε
ρ (Z) ≤ 〈ξ, Z〉 = 1

〈1−Πγ+δ, ρ〉 ∑
k 6∈Sγ+δ

λk(Z)〈zkz∗k , ρ〉

≤ 2γ+δ

1− ε ∑
k 6∈Sγ+δ

λk(Z)〈zkz∗k , Q〉 ≤ 2γ+δ

1− ε
〈Z, Q〉 ≤ 2γ+δ

1− ε
.

(5.70)

As this is so for all δ > 0, it follows that

log ψ
√

ε
ρ (Z) ≤ γ− log(1− ε), (5.71)

and therefore
log ψ

√
ε

ρ (Z) ≤ Dε
H(ρ‖Q) + log

( 1
ε(1− ε)

)
. (5.72)

By optimizing over all operators Z ∈ Pos(X) that satisfy 〈Q, Z〉 ≤ 1 we obtain the
required inequality.

Theorem 5.15. Let ρ ∈ D(X) and Q ∈ Pos(X) be operators satisfying im(ρ) ⊆ im(Q),
let ε ∈ (0, 1), and let δ ∈ (0, 1− ε). It is the case that

Dε+δ
H (ρ‖Q) ≤ Dε

max(ρ‖Q)− log
( δ

ε + δ

)
. (5.73)

Proof. Suppose that ξ ∈ Bε(ρ) satisfies

ξ ≤ 2Dε
max(ρ‖Q)Q. (5.74)

Given that ξ ∈ Bε(ρ) we have that

ρ ≤ ξ + R (5.75)

for R ∈ Pos(X) satisfying Tr(R) ≤ ε.
Now consider the quantity Dε+δ

H (ρ‖Q), and in particular consider the choices

λ = 2−Dε
max(ρ‖Q) and Y =

2−Dε
max(ρ‖Q)R
ε + δ

(5.76)

in the dual form of Optimization Problem 5.12 (with ε being replaced by ε + δ).
These choices represent a feasible solution to this conic program, and the objective
value is at least

2−Dε
max(ρ‖Q)

(
1− ε

ε + δ

)
(5.77)
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It follows that
Dε+δ

H (ρ‖Q) ≤ Dε
max(ρ‖Q)− log

( δ

ε + δ

)
, (5.78)

which completes the proof.

Corollary 5.16. Let ρ ∈ D(X) and Q ∈ Pos(X) be operators. For every ε ∈ (0, 1), we
have

lim
n→∞

Dε
H
(
ρ⊗n

∥∥Q⊗n)
n

= D(ρ‖Q). (5.79)
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