
Lecture 3

Smoothing and optimizing
max-relative entropy

Recall the definition of the max-relative entropy, which was introduced in the pre-
vious lecture:

Dmax(ρ‖Q) = inf
{

λ ∈ R : ρ ≤ 2λQ
}

. (3.1)

In this lecture we will consider what happens when we minimize this function
over various choices of ρ and Q. Two common situations in which this is done are
as follows:

1. Smoothing. For a given ρ, Q, and ε > 0, the smoothed max-relative entropy of ρ

with respect to Q is defined as

Dε
max(ρ‖Q) = inf

ξ∈Bε(ρ)
Dmax(ξ‖Q), (3.2)

where Bε(ρ) denotes the set of states that are ε-close to ρ with respect to some
notion of distance.

2. Optimizing over models. For a given ρ and a convex set C of possible choices of
models Q, we may consider the quantity

Dmax(ρ‖C) = inf
Q∈C

Dmax(ρ‖Q), (3.3)

which measures in a certain sense which Q ∈ C incurs the least loss of effi-
ciency when serving as a model for the state ρ.

In both cases, the optimizations can be represented as conic programs. We will
consider the two types of optimizations separately in the sections that follow.
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3.1 Smoothed max-relative entropy

Let us begin with the smoothed max-relative entropy, where one takes the min-
imum value of the max-relative entropy over all choices of actual states that are
close to a given state, as suggested above. The idea is that the smoothed max-
relative entropy reflects a tolerance for small errors, which we often have or would
like to express when analyzing operationally defined notions. Without smoothing,
the max-relative entropy can sometimes, in certain settings at least, have unwanted
hyper-sensitivities that smoothing eliminates.

Definition

As it turns out, there is not a single agreed upon definition for the smoothed max-
relative entropy; different authors sometimes choose different notions of distance
with respect to which the smoothing is done, which translates to different choices
for the set Bε(ρ) in (3.2). In addition, the operator ξ is sometimes allowed to range
not only over density operators, but also over sub-normalized density operators,
and in this case the definition of the max-relative entropy is extended in the most
straightforward way to accommodate such operators.

It is typically the case, however, that the notions of distance with respect to
which the smoothed max-relative entropy is defined are based on either the trace
distance or the fidelity function. Through the Fuchs–van de Graaf inequalities, one
finds that the resulting definitions of smoothed max-relative entropy are roughly
equivalent, and are certainly quite similar in a qualitative sense.

For the sake of concreteness, we will define the smoothed max-relative entropy
in terms of the trace distance, as the following definition makes precise.

Definition 3.1 (Smoothed max-relative entropy). For a density operator ρ ∈ D(X),
a positive semidefinite operator Q ∈ Pos(X), and a real number ε ∈ (0, 1), the
ε-smoothed relative max-entropy of ρ with respect to Q is defined as

Dε
max(ρ‖Q) = min

ξ∈Bε(ρ)
Dmax(ξ‖Q), (3.4)

where
Bε(ρ) =

{
ξ ∈ D(X) : 1

2‖ρ− ξ‖1 ≤ ε
}

. (3.5)

A couple of other common choices for Bε(ρ) are these:

Bε(ρ) =
{

ξ ∈ D(X) : F(ξ, ρ)2 ≥ 1− ε
}

,

Bε(ρ) =
{

ξ ∈ Pos(X) : F(ξ, ρ)2 ≥ 1− ε2, Tr(ξ) ≤ 1
}

.
(3.6)
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Optimizing over arbitrary closed and convex sets of states

To better understand the smoothed max-relative entropy, it is helpful to consider
a more general set-up. Suppose that C ⊆ D(X) is any closed and compact set of
density operators, let Q ∈ Pos(X) be given, and consider the problem of minimiz-
ing η over all choices of ξ ∈ C and η ∈ R that satisfy ξ ≤ ηQ. This problem can be
expressed as a conic problem as will now be described.

First, define a set K ⊂ R⊕Herm(X)⊕R⊕Herm(X) as follows:

K =
{
(λ, λξ, η, P) : η, λ ≥ 0, ξ ∈ C, P ∈ Pos(X)

}
. (3.7)

This set is a closed and convex cone. One may think of K as being the Cartesian
product of three sets: the first is

L =
{
(λ, λξ) : λ ≥ 0, ξ ∈ C

}
, (3.8)

the second is the set of all nonnegative real numbers η ≥ 0, and the third is Pos(X).
All three of these sets are closed and convex cones; in the case of L this follows
from the assumption that C is a compact and convex set. It should be noted that
the construction of a convex cone L from a convex set C like this is both common
and useful.

Now, the optimization problem suggested above is evidently equivalent to the
problem of minimizing the inner-product〈

(0, 0, 1, 0), (λ, λξ, η, P)
〉

(3.9)

over all (λ, λξ, η, P) ∈ K, subject to the affine linear constraints that

λ = 1 and ηQ = λξ + P. (3.10)

By defining a linear map φ : R⊕Herm(X)⊕R⊕Herm(X)→ R⊕Herm(X) as

φ(λ, X, η, Y) = (λ, ηQ− X−Y), (3.11)

these affine linear constraints may be expressed as

φ(λ, λξ, η, P) = (1, 0). (3.12)

The optimization problem being considered is therefore the primal form of a conic
program, which is stated below (together with a simplified expression of its dual
form) as Optimization Problem 3.2.

The dual form of this optimization problem is given by the maximization of the
objective function 〈

(1, 0), (µ, Z)
〉

(3.13)
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subject to the constraint

(0, 0, 1, 0)− φ∗(µ, Z) ∈ K∗, (3.14)

where (µ, Z) ranges over the space R⊕Herm(X) (as is dictated by Optimization
Problem 1.4 in Lecture 1). To simplify this problem, we must compute the adjoint
map φ∗ and try to understand what K∗ looks like. The adjoint of φ may simply be
computed, and one obtains

φ∗(µ, Z) = (µ,−Z, 〈Q, Z〉,−Z). (3.15)

As for the dual cone to K, an element (δ, H, γ, R) is contained in K∗ if and only if〈
(δ, H, γ, R), (λ, λξ, η, P)

〉
= δλ + λ〈H, ξ〉+ γη + 〈R, P〉 ≥ 0 (3.16)

for all λ, η ≥ 0, ξ ∈ C, and P ∈ Pos(X). This is equivalent to the requirement that
γ ≥ 0, R ∈ Pos(X), and

δ ≥ −〈H, ξ〉 (3.17)

for all ξ ∈ C. By defining a function

ψC(H) = inf
ξ∈C
〈ξ, H〉, (3.18)

we may alternatively express K∗ as follows:

K∗ =
{
(δ, H, γ, R) : δ ≥ −ψC(H), γ ≥ 0, R ∈ Pos(X)

}
. (3.19)

The dual problem is therefore a maximization of δ subject to the constraint that
δ ≤ ψC(Z), 〈Q, Z〉 ≤ 1, and Z ∈ Pos(X), or, equivalently, a maximization of ψC(Z)
over all Z ∈ Pos(Z) satisfying 〈Q, Z〉 ≤ 1. We obtain the following simplified
expression of this conic program.

Optimization Problem 3.2

Primal problem

minimize: η

subject to: ξ ≤ ηQ,

ξ ∈ C,

η ≥ 0.

Dual problem

maximize: inf{〈ξ, Z〉 : ξ ∈ C}
subject to: 〈Q, Z〉 ≤ 1,

Z ∈ Pos(X).

It can be shown, through the use of Slater’s theorem, that strong duality always
holds for Optimization Problem 3.2.
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Conic program for smoothed max-relative entropy

At this point, one may substitute the set Bε(ρ) for C in Optimization Problem 3.2 to
obtain a conic program for the smoothed max-relative entropy. To be precise, the
smoothed max-relative entropy Dε

max(ρ‖Q) is the logarithm of the optimal value
of this conic program. One may also note that if C = {ρ}, then the semidefinite
program for the ordinary (non-smoothed) max-relative entropy is recovered.

Naturally, other notions of smoothing can be considered by making alternative
choices for the set C.

3.2 Minimizing over a convex set of models

Next we may consider what happens when we minimize the max-relative entropy
over a compact and convex set in the second coordinate. That is, for C ⊆ Pos(X)
being a compact and convex set, we may consider the quantity

Dmax(ρ‖C) = inf
Q∈C

Dmax(ρ‖Q) (3.20)

for a given choice of ρ ∈ D(X).

Conic program formulation

Going through a similar process to the one above, we obtain the following conic
program.

Optimization Problem 3.3

Primal problem

minimize: η

subject to: ρ ≤ ηQ
Q ∈ C,

η ≥ 0

Dual problem

maximize: 〈ρ, Z〉
subject to: sup{〈Q, Z〉 : Q ∈ C} ≤ 1

Z ∈ Pos(X)

Similar to before, the value Dmax(ρ‖C) defined above is the logarithm of the
optimal value of this conic program. The constraint in the dual problem can alter-
natively be written

θC(Z) ≤ 1, (3.21)

where
θC(H) = sup

Q∈C
〈Q, H〉 (3.22)

is the so-called support function of the convex set C.
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Example 3.4. We have, in fact, already seen an example in which we minimize
over models drawn from a convex set: the conditional min-entropy. The conditional
min-entropy of X given Y, for the state ρ ∈ D(X⊗ Y), is given by

Hmin(X|Y)ρ = − inf
σ∈D(Y)

Dmax(ρ‖1X ⊗ σ) = − inf
Q∈C

Dmax(ρ‖Q) (3.23)

for C = {1X ⊗ σ : σ ∈ D(Y)}. Observe that

θC(Z) = sup
Q∈C
〈Q, Z〉 = sup

σ∈D(Y)

〈1X ⊗ σ, Z〉

= sup
σ∈D(Y)

〈σ, TrX(Z)〉 = λ1
(
TrX(Z)

)
.

(3.24)

By the dual formulation of the conic program above, we find that

Hmin(X|Y)ρ = sup
{

log〈ρ, Z〉 : λ1
(
TrX(Z)

)
≤ 1, Z ∈ Pos(X⊗ Y)

}
= sup

{
log〈ρ, Z〉 : TrX(Z) ≤ 1Y, Z ∈ Pos(X⊗ Y)

}
= sup

{
log〈ρ, Z〉 : TrX(Z) = 1Y, Z ∈ Pos(X⊗ Y)

}
,

(3.25)

which is consistent with the primal problem in our semidefinite program for the
conditional min-entropy from Lecture 2.

Divergence from a convex set of states

For a convex set of states C ⊆ D(X), it is typical that one views the quantity

D(ρ‖C) = inf
σ∈C

D(ρ‖σ) (3.26)

(where it should be stressed that it is the ordinary quantum relative entropy, not
the max-relative entropy, that appears in this equation) as a measure of distance
(or divergence) of ρ from C. For example, the relative entropy of entanglement of a
state ρ ∈ D(Y⊗ Z) is given by

REE(Y : Z)ρ = D(ρ‖SepD(Y : Z)) = inf
σ∈SepD(Y:Z)

D(ρ‖σ). (3.27)

We may consider a similar notion for the max-relative entropy in place of the
ordinary relative entropy:

Dmax(ρ‖C) = inf
σ∈C

Dmax(ρ‖σ). (3.28)

To better understand this quantity, let us expand the definition of the max-relative
entropy, so that we obtain

Dmax(ρ‖C) = inf
{

λ ∈ R : ρ ≤ 2λσ, σ ∈ C
}

. (3.29)
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2−λρ + (1− 2−λ)ξ

ρ

ξ

D(X)

C

Figure 3.1: Dmax(ρ‖C) is the minimum value of λ for which 2−λρ + (1− 2−λ)ξ is
in C, for some choice of a density operator ξ.

The inequality on the right-hand side of this equation can be expressed as an
equality through the introduction of a positive semidefinite slack variable P, which
yields

Dmax(ρ‖C) = inf
{

λ ∈ R : ρ + P = 2λσ, σ ∈ C, P ∈ Pos(X)
}

. (3.30)

As ρ and σ are density operators, the slack variable P must have trace equal to
2λ − 1 in order for the equality ρ + P = 2λσ to hold. We may therefore replace P
by (2λ − 1)ξ for a density operator ξ, and we obtain

Dmax(ρ‖C) = inf
{

λ ∈ R : ρ +
(
2λ − 1

)
ξ = 2λσ, σ ∈ C, ξ ∈ D(X)

}
, (3.31)

which is equivalent to

Dmax(ρ‖C) = inf
{

λ ∈ R : 2−λρ +
(
1− 2−λ

)
ξ ∈ C, ξ ∈ D(X)

}
. (3.32)

This expression reveals that the quantity Dmax(ρ‖C) has the simple and intuitive
interpretation suggested by Figure 3.1. For λ = Dmax(ρ‖C), the quantity 2λ − 1 is
sometimes called the (global or generalized) robustness of ρ with respect to C.

3.3 Minimizing over both states and models

Finally, and very briefly, it should be noted that one can simultaneously minimize
over both arguments in the max-relative entropy. That is, if C ⊆ D(X) and D ⊆
Pos(X) are convex and compact sets, one may consider the quantity

Dmax(C‖D) = inf
σ∈C
Q∈D

Dmax(ρ‖Q). (3.33)

This value is the logarithm of the optimal value of the following conic program.
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Optimization Problem 3.5

Primal problem

minimize: η

subject to: ρ ≤ ηQ
ρ ∈ C

Q ∈ D

η ≥ 0

Dual problem

maximize: ψC(Z)
subject to: θD(Z) ≤ 1

Z ∈ Pos(X)

where
ψC(Z) = inf

ρ∈C
〈ρ, Z〉 and θD(Z) = sup

Q∈D
〈Q, Z〉. (3.34)
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