
Lecture 2

Max-relative entropy and conditional
min-entropy

In this lecture we will first define the max-relative entropy and observe some of its
properties. We will then define the conditional min-entropy in terms of the quantum
max-relative entropy, derive an alternative characterization of this quantity, and
consider the conditional min-entropy of a few example classes of states.

Before proceeding to the definition of the max-relative entropy, it will be help-
ful to consider the ordinary quantum relative entropy and its relationship to the
conditional quantum entropy as a source of inspiration. Recall that the quantum
relative entropy is defined as follows for all density operators ρ and all positive
semidefinite operators Q acting on the same complex Euclidean space:

D(ρ‖Q) =

{
Tr(ρ log ρ)− Tr(ρ log Q) im(ρ) ⊆ im(Q)

∞ im(ρ) 6⊆ im(Q).
(2.1)

We can define this function more generally for any positive semidefinite operator P
in place of the density operator ρ, but our focus will be on the case where the first
argument is a density operator.

One way to think about the quantum relative entropy is that it represents the
loss of efficiency, measured in bits, that is incurred when one plans ahead for Q but
receives ρ instead. This is highly informal, and should not be taken too seriously,
but we will allow this intuitive description to suggest some useful terminology: we
will refer to the second argument Q in the quantum relative entropy as the model,
and to the first argument ρ as the actual state, for the sake of convenience.

Irrespective of how we choose to interpret the quantum relative entropy func-
tion, there is no denying its enormous utility as a “helper function,” through which
fundamental entropic quantities may be defined and analyzed. In particular, the
conditional quantum entropy and the quantum mutual information are defined in
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terms of the quantum relative entropy as follows:

H(X |Y)ρ = −D(ρ‖1X ⊗ ρ[Y]),

I(X : Y)ρ = D(ρ‖ρ[X]⊗ ρ[Y]),
(2.2)

for all ρ ∈ D(X ⊗ Y). Then, though properties of the quantum relative entropy,
one may establish important properties of the conditional quantum entropy and
quantum mutual information. For example, through the joint convexity of quantum
relative entropy,

D(λρ0 + (1− λ)ρ1‖λQ0 + (1− λ)Q1) ≤ λ D(ρ0‖Q0) + (1− λ)D(ρ1‖Q1), (2.3)

one may prove the critically important strong subadditivity property of von Neu-
mann entropy, which may be expressed as

H(X|Y,Z)ρ ≤ H(X|Y)ρ (2.4)

for every ρ ∈ D(X⊗ Y⊗ Z).
The quantum relative entropy, and the entropic quantities it defines, tell us a

great deal about the so-called i.i.d. limit, where an increasing number of indepen-
dent copies of a given state are made available. In contrast, when our interest is
in the so-called one-shot setting, where our concern is primarily with a single copy
of a given state, the quantum relative entropy and the quantities it defines have
limited value.

2.1 Quantum max-relative entropy

The quantum max-relative entropy (or just max-relative entropy for short) offers an
alternative to the ordinary quantum relative entropy that is relevant in the one-
shot setting. While it is a different function from the quantum relative entropy,
it does possess some of the same general characteristics that make the quantum
relative entropy function useful. As we will see in a couple of lectures, the ordinary
quantum relative entropy can in fact be recovered from the max-relative entropy
(or, to be more precise, a smoothed version of max-relative entropy) by applying it
in the i.i.d. limit.

Definition 2.1 (Quantum max-relative entropy). For a density operator ρ and a
positive semidefinite operator Q acting on the same complex Euclidean space, the
quantum max-relative entropy of ρ with respect to Q is defined as follows:

Dmax(ρ‖Q) = inf{λ ∈ R : ρ ≤ 2λQ}. (2.5)
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Remark 2.2. The same definition may be used when ρ is any positive semidefinite
operator, and not necessarily a density operator. It is common, in particular, that ρ

is taken to be a sub-normalized state, meaning ρ ≥ 0 and Tr(ρ) ≤ 1. In this course,
however, we will focus on the case that ρ is normalized.

Let us first observe the equivalence of the following statements:

1. Dmax(ρ‖Q) < ∞

2. im(ρ) ⊆ im(Q) (or, equivalently, ker(Q) ⊆ ker(ρ))

3. D(ρ‖Q) < ∞

In particular, the max-relative entropy is finite if and only if the ordinary quantum
relative entropy is finite.

We may also observe that the max-relative entropy can be expressed through a
semidefinite program. More specifically, the max-relative entropy is the logarithm
of the optimal value of the following semidefinite program.

Optimization Problem 2.3 (SDP for max-relative entropy)

Primal problem

minimize: η

subject to: ρ ≤ ηQ
η ≥ 0

Dual problem

maximize: 〈ρ, X〉
subject to: 〈Q, X〉 ≤ 1

X ∈ Pos(X)

Alternatively, the max-relative entropy is the negative logarithm of the optimal
value of the following semidefinite program.

Optimization Problem 2.4 (Reciprocal SDP for max-relative entropy)

Primal problem

maximize: µ

subject to: µρ ≤ Q
µ ≥ 0

Dual problem

minimize: 〈Q, Y〉
subject to: 〈ρ, Y〉 ≥ 1

Y ∈ Pos(X)

Notice that all four of the problems just suggested are strictly feasible when
im(ρ) ⊆ im(Q). Slater’s theorem therefore implies that strong duality holds under
this assumption for both semidefinite programs, with optimal values always being
achieved in all four problems. Strong duality also holds when im(ρ) 6⊆ im(Q); in
this case the optimal value of both the primal and dual forms in Optimization
Problem 2.3 is positive infinity, while the optimal value of both the primal and
dual forms in Optimization Problem 2.4 is zero.
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Two alternative characterizations of max-relative entropy

We will now take moment to observe two alternative characterizations of the max-
relative entropy. For the first, observe that if im(ρ) ⊆ im(Q), then the condition
ρ ≤ 2λQ is equivalent to ∥∥∥√Q+ρ

√
Q+
∥∥∥ ≤ 2λ. (2.6)

Therefore, we have

Dmax(ρ‖Q) =

log
(∥∥∥√Q+ρ

√
Q+
∥∥∥) im(ρ) ⊆ im(Q)

∞ im(ρ) 6⊆ im(Q).
(2.7)

We may alternatively write

Dmax(ρ‖Q) = log
(∥∥∥Q−1/2 ρQ−1/2

∥∥∥), (2.8)

with the somewhat informal understanding that the expression evaluates to ∞ in
case im(ρ) 6⊆ im(Q).

The second alternative characterization of the max-relative entropy begins with
the observation that the condition ρ ≤ 2λQ is equivalent to 〈ρ, Z〉 ≤ 2λ〈Q, Z〉 for
all positive definite operators Z. Therefore, assuming Q 6= 0, we find that

Dmax(ρ‖Q) = sup
Z>0

log
(
〈ρ, Z〉
〈Q, Z〉

)
. (2.9)

Interpretation of max-relative entropy

One simple and intuitive way to think about the max-relative entropy Dmax(ρ‖Q)
is as follows. Suppose that one attempts to express Q as a nonnegative linear com-
bination of ρ along with any other collection of positive semidefinite operators. We
can amalgamate the other positive semidefinite operators and associated nonneg-
ative scalars into a single positive semidefinite operator R, for the sake of focusing
on the relationship between ρ and Q, and we obtain an expression like this:

Q = ηρ + R (where R ≥ 0). (2.10)

The largest that the value η can be, assuming we are free to choose R however we
wish, is precisely 2−Dmax(ρ‖Q).

If Q = σ is itself a density operator, then necessarily η ∈ [0, 1], and we may
think of this value as being a probability. The simple fact that η ≤ 1 immediately
yields a variant of Klein’s inequality for the max-relative entropy:

Dmax(ρ‖σ) ≥ 0, (2.11)
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with equality if and only if ρ = σ. If, on the other hand, σ is “highly dissimilar” to ρ,
then any convex combination involving ρ and yielding σ must take the probability
η associated with ρ to be small, so Dmax(ρ‖σ) must be large. In the extreme case
that im(ρ) 6⊆ im(Q), then any expression of Q taking the form (2.10) must have
η = 0, which is consistent with Dmax(ρ‖σ) = ∞.

Monotonicity of max-relative entropy

Next let us observe that the max-relative entropy is monotonic with respect to the
action of channels, meaning that

Dmax(Φ(ρ)‖Φ(Q)) ≤ Dmax(ρ‖Q) (2.12)

for all ρ ∈ D(X), Q ∈ Pos(X), and Φ ∈ C(X,Y). In fact, complete positivity is not
required; the inequality (2.12) holds for all Φ positive and trace preserving.

Before we prove that the max-relative entropy is monotonic in the sense just
described, let us noted that we cannot follow a similar route to this fact that we
followed when proving the analogous fact for the ordinary quantum relative en-
tropy in CS 766/QIC 820—which was through the joint convexity of quantum rel-
ative entropy. This is because the max-relative entropy is not jointly convex—and this
is a sense in which it differs from the ordinary quantum relative entropy. The max-
relative entropy is, however, jointly quasi-convex:

Dmax

(
n

∑
k=1

pkρk

∥∥∥∥∥ n

∑
k=1

pkQk

)
≤ max

k∈{1,...,n}
Dmax(ρk‖Qk). (2.13)

The fact that the max-relative entropy is monotonic with respect to the action
of channels, however, is not only true but is almost immediate from the definition
of the max-relative entropy. Specifically, if we have ρ ≤ 2λQ for some choice of λ,
then Φ(ρ) ≤ 2λΦ(Q) by the positivity of Φ, from which (2.12) follows. The as-
sumption that Φ preserves trace implies that Tr(Φ(ρ)) = 1, so that it is a suitable
first argument to the max-relative entropy—but this assumption can be dropped
altogether, provided that we’re willing to allow Φ(ρ) as a first argument to the
max-relative entropy function.

Max-relative entropy upper-bounds relative entropy

One can prove that the max-relative entropy is at least as large as the ordinary
quantum relative entropy, meaning

D(ρ‖Q) ≤ Dmax(ρ‖Q) (2.14)
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for all density operators ρ and all positive semidefinite operators Q.
One way to prove this is to use the fact that the logarithm is an operator monotone

function: for all positive definite operators P and Q with P ≤ Q, it is the case that
log(P) ≤ log(Q). This is not a trivial fact to prove, but it is well-known, and you
should have no trouble finding a proof if you search for one.

Now, suppose that λ satisfies ρ ≤ 2λQ, or equivalently 2−λρ ≤ Q. We then
have

D(ρ‖Q) = Tr(ρ log ρ)− Tr(ρ log Q) ≤ Tr(ρ log ρ)− Tr
(
ρ log

(
2−λρ

))
= λ, (2.15)

and the relation (2.14) follows by minimizing over λ.

Max-relative entropy of tensor products and block operators

The max-relative entropy is additive with respect to tensor products:

Dmax
(
ρ0 ⊗ ρ1

∥∥Q0 ⊗Q1
)
= Dmax(ρ0

∥∥Q0) + Dmax(ρ1
∥∥Q1). (2.16)

(The ordinary relative entropy is also additive with respect to tensor products in
the same way.) The characterization

Dmax(ρ‖Q) =

log
(∥∥∥√Q+ρ

√
Q+
∥∥∥) im(ρ) ⊆ im(Q)

∞ im(ρ) 6⊆ im(Q)
(2.17)

offers an easy route to a proof of this fact. Observe in particular that this implies
that, for every choice of ρ, Q, and a positive integer n, we have

Dmax
(
ρ⊗n∥∥Q⊗n) = n Dmax(ρ‖Q). (2.18)

The max-relative entropy also obeys the following identity, for any choice of
density operator ρ1, . . . , ρn, positive semidefinite operators Q1, . . . , Qn, and a prob-
ability vector (p1, . . . , pn):

Dmax

(
n

∑
k=1

pk|k〉〈k| ⊗ ρk

∥∥∥∥∥ n

∑
k=1

pk|k〉〈k| ⊗Qk

)
= max

k∈{1,...,n}
Dmax(ρk‖Qk). (2.19)

Using the formula Dmax(ρ‖Q) = Dmax(ρ‖λQ) − log(η), we obtain this formula
for the situation in which the probabilities p1, . . . , pn are not included in the blocks
of the second operator:

Dmax

(
n

∑
k=1

pk|k〉〈k| ⊗ ρk

∥∥∥∥∥ n

∑
k=1
|k〉〈k| ⊗Qk

)
= max

k∈{1,...,n}

(
Dmax(ρk‖Qk) + log(pk)

)
.

(2.20)
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In contrast, the ordinary quantum relative entropy obeys this equation:

D

(
n

∑
k=1

pk|k〉〈k| ⊗ ρk

∥∥∥∥∥ n

∑
k=1

pk|k〉〈k| ⊗Qk

)
=

n

∑
k=1

pk D(ρk‖Qk). (2.21)

Using the equation D(ρ‖Q) = D(ρ‖λQ)− log(η), we then conclude that

D

(
n

∑
k=1

pk|k〉〈k| ⊗ ρk

∥∥∥∥∥ n

∑
k=1
|k〉〈k| ⊗Qk

)
=

n

∑
k=1

pk D(ρk‖Qk)−H(p). (2.22)

2.2 Conditional min-entropy

As was already mentioned at the beginning of the lecture, the ordinary conditional
quantum entropy is given by the formula

H(X|Y)ρ = −D(ρ‖1X ⊗ ρ[Y]). (2.23)

We may also observe that

D(ρ‖1X ⊗ ρ[Y]) = inf
σ∈D(Y)

D(ρ‖1X ⊗ σ); (2.24)

the infimum value is always obtained when σ = ρ[Y]. With this fact in mind, we
define the conditional min-entropy as follows.

Definition 2.5. Let X and Y be registers and let ρ ∈ D(X⊗ Y) be a state of these
registers. The conditional min-entropy of X given Y for the state ρ is defined as

Hmin(X|Y)ρ = − inf
σ∈D(Y)

Dmax(ρ‖1X ⊗ σ). (2.25)

Remark 2.6. It is not, in general, the case that the infimum in (2.25) is achieved
when σ = ρ[Y].

By expanding the definition of the max-relative entropy, one may alternatively
express the conditional min-entropy in the following way:

2−Hmin(X|Y)ρ = inf
{

η ≥ 0 : ρ ≤ η1X ⊗ σ, σ ∈ D(Y)
}

= inf
{

Tr(Y) : ρ ≤ 1X ⊗Y, Y ∈ Pos(Y)
}

.
(2.26)

The conditional min-entropy is always at most the ordinary conditional quan-
tum entropy: Hmin(X|Y)ρ ≤ H(X|Y)ρ. This fact follows from the fact that the max-
relative entropy is at least the ordinary quantum relative entropy, for then we have

Dmax(ρ‖1X ⊗ σ) ≥ D(ρ‖1X ⊗ σ) (2.27)

for all density operators σ, implying the claimed inequality.
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Semidefinite program for conditional min-entropy

It is evident from (2.26) that the conditional min-entropy can be expressed as a
semidefinite program. In particular, the quantity Hmin(X|Y)ρ is the negative loga-
rithm of the optimal value of the following semidefinite program.

Optimization Problem 2.7 (SDP for conditional min-entropy)

Primal problem

maximize: 〈ρ, X〉
subject to: TrX(X) = 1Y

X ∈ Pos(X⊗ Y)

Dual problem

minimize: Tr(Y)
subject to: 1X ⊗Y ≥ ρ

Y ∈ Herm(Y)

The dual problem is clearly consistent with the expression (2.26), whereas the
primal problem corresponds (essentially) to an optimization of a linear function
(represented by the state ρ) over all channels Φ ∈ C(Y,X). There is a useful and
intuitive way to think about this optimization, but first we will take a moment to
introduce a useful concept, the transpose of a channel.

Definition 2.8. Let X and Y be complex Euclidean spaces and let Φ ∈ T(Y,X). The
transpose of Φ is the unique map ΦT ∈ T(X,Y) satisfying the equation(

ΦT ⊗ 1L(X)
)(

vec(1X) vec(1X)∗
)
=
(
1L(Y) ⊗Φ)

(
vec(1Y) vec(1Y)∗

)
. (2.28)

Equivalently, the map ΦT ∈ T(X,Y) is the (uniquely determined) map whose
Choi representation is given by

J(ΦT) =
(
1L(Y) ⊗Φ)

(
vec(1Y) vec(1Y)∗

)
. (2.29)

Here is a short list of facts concerning this notion, all of which are straightforward
to prove.

1. (ΦT)T = Φ.

2. The map Φ 7→ ΦT from T(Y,X) to T(X,Y), is linear, one-to-one, and onto.

3. ΦT ∈ CP(X,Y) if and only if Φ ∈ CP(Y,X).

4. ΦT is unital if and only if Φ preserves trace.

Finally, one may observe that ΦT is (as you might have guessed) the map that
is obtained by taking any Kraus representation of Φ and transposing the Kraus
operators.
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Returning to Optimization Problem 2.7, let us consider the set A of primal fea-
sible operators, which can be expressed in multiple ways based on the facts about
the transpose of a map just listed:

A = {X ∈ Pos(X⊗ Y) : TrX(X) = 1Y}
=
{(

Φ⊗ 1L(Y)
)(

vec(1Y) vec(1Y)∗
)

: Φ ∈ C(Y,X)
}

=
{(
1L(X) ⊗ΦT

)(
vec(1X) vec(1X)∗

)
: Φ ∈ C(Y,X)

}
=
{(
1L(X) ⊗Ψ

)(
vec(1X) vec(1X)∗

)
: Ψ ∈ CP(X,Y), Ψ(1X) = 1Y

}
.

(2.30)

The optimal value of the semidefinite program is 2−Hmin(X|Y)ρ , so

2−Hmin(X|Y)ρ

= sup
{〈

ρ, (1L(X) ⊗Ψ)
(
vec(1X) vec(1X)∗

)〉
: Ψ ∈ CP(X,Y), Ψ(1X) = 1Y

}
= sup

{〈
(1L(X) ⊗Ψ∗)(ρ), vec(1X) vec(1X)∗

〉
: Ψ ∈ CP(X,Y), Ψ(1X) = 1Y

}
= sup

{〈
(1L(X) ⊗ Ξ)(ρ), vec(1X) vec(1X)∗

〉
: Ξ ∈ C(Y,X)

}
. (2.31)

That is,
2−Hmin(X|Y)ρ = n · sup

Ξ∈C(Y,X)

〈(
1L(X) ⊗ Ξ

)
(ρ), τ

〉
(2.32)

where

τ =
1
n

n

∑
a,b=1
|a〉〈b| ⊗ |a〉〈b| and n = dim(X). (2.33)

In words, 2−Hmin(X|Y)ρ is equal to dim(X) times the maximum squared-fidelity,
over all channels Ξ ∈ C(Y,X), between the state (1L(X) ⊗ Ξ)(ρ) and the canonical
maximally entangled state τ ∈ D(X⊗X).

2.3 Examples

We will conclude the lecture by considering the conditional min-entropy of a few
classes of states.

Example 2.9. Suppose Y is trivial (i.e., one-dimensional), so that ρ ∈ D(X). We
then find that

Hmin(X|Y)ρ = − inf
σ∈D(Y)

Dmax(ρ‖1X ⊗ σ)

= −Dmax(ρ‖1X)
= − log λ1(ρ).

(2.34)

Naturally, we omit the register Y from this notation when it is trivial:

Hmin(X)ρ = Hmin(ρ) = − log λ1(ρ). (2.35)

21



Example 2.10. Suppose ρ = σ⊗ ξ for σ ∈ D(X) and ξ ∈ D(Y). Through a similar
calculation to the previous example, we find that

Hmin(X|Y)ρ = − inf
ξ ′∈D(Y)

Dmax(σ⊗ ξ‖1X ⊗ ξ ′)

= −Dmax(σ‖1X)
= Hmin(X)σ.

(2.36)

This is natural: if the registers X and Y are completely uncorrelated, the conditional
min-entropy of X given Y is simply the min-entropy of X.

Example 2.11. Next, suppose that we have a separable state: ρ ∈ SepD(X : Y).
Then, for any channel Ξ ∈ C(Y,X) we have

(1L(X) ⊗ Ξ)(ρ) ∈ SepD(X : X); (2.37)

applying a channel locally to one part of a separable state always results in a sepa-
rable state. The inner-product between any separable state and the canonical max-
imally entangled state τ is at most 1/n (as we proved in CS 766/QIC 820), and
therefore

2−Hmin(X|Y)ρ = n · sup
Ξ∈C(Y,X)

〈(
1L(X) ⊗ Ξ

)
(ρ), τ

〉
≤ n · 1

n
= 1. (2.38)

The conditional min-entropy of every separable state is therefore nonnegative.
By similar reasoning, for every PPT state ρ ∈ PPT(X : Y) ∩D(X⊗ Y) it is the

case that Hmin(X|Y)ρ ≥ 0.

Example 2.12. Suppose that the τ can be recovered perfectly by applying a channel
locally to Y for the state ρ ∈ D(X⊗ Y). This is equivalent to ρ taking the form

ρ = (1X ⊗V)(τ ⊗ ξ)(1X ⊗V)∗ (2.39)

for some choice of a density operator ξ ∈ D(Z) and an isometry V ∈ U(X⊗ Z,Y).
Then we have

Hmin(X|Y)ρ = − log(n), (2.40)

which is the minimum possible value for the conditional min-entropy.

Example 2.13. Finally, suppose that ρ is a classical-quantum state:

ρ =
n

∑
a=1

p(a)|a〉〈a| ⊗ ξa. (2.41)
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We find that
2−Hmin(X|Y)ρ = n · sup

Ξ∈C(Y,X)

〈(
1L(X) ⊗ Ξ

)
(ρ), τ

〉
= sup

Ξ∈C(Y,X)

n

∑
a=1

p(a)〈a|Ξ(ξa)|a〉,
(2.42)

with the simplification to the second line being possible because ρ is a classical-
quantum state. This has the following intuitive meaning: Hmin(X|Y)ρ is the neg-
ative logarithm of the optimal correctness probability to identify a state chosen
randomly according to the ensemble corresponding to ρ.
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