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Abstract

This paper studies quantum refereed games, which are quantum interactive proof systems
with two competing provers: one that tries to convince the verifier to accept and the other that
tries to convince the verifier to reject. We prove that every language having an ordinary quan-
tum interactive proof system also has a quantum refereed game in which the verifier exchanges
just one round of messages with each prover. A key part of our proof is the fact that there exists
a single quantum measurement that reliably distinguishes between mixed states chosen arbi-
trarily from disjoint convex sets having large minimal trace distance from one another. We also
show how to reduce the probability of error for some classes of quantum refereed games.

1 Introduction

A refereed gameconsists of a conversation between a computationally bounded verifier and two
computationally unbounded provers regarding some input string x. The two provers use their
unbounded computational power to compete with each other: one prover, called theyes-prover,
attempts to convince the verifier to acceptx, while the other prover, called theno-prover, attempts
to convince the verifier to rejectx. At the end of the interaction, the verifier decides whether to
accept or reject the inputx, effectively deciding which of the provers wins the game. Such games
represent games of incomplete information; the messages exchanged between one prover and the
verifier are considered to be hidden from the other player.

A languageL is said to have a refereed game with errorε if there is a polynomial-time verifier
satisfying the the following conditions. For each stringx ∈ L, there exists a yes-prover that can
always convince the verifier to acceptx with probability at least1−ε, regardless of the no-prover’s
strategy, and for eachx 6∈ L, there exists a no-prover that can always convince the verifier to reject
xwith probability at least1−ε, regardless of the yes-prover’s strategy. Aturn for one of the provers
consists of a message from the verifier to that prover, followed by a response from that prover back
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to the verifier. One may consider the case where the provers’ turns are played sequentially or in
parallel.

The refereed games model is based on the interactive proof system model [11, 2, 3, 4], which
has a rich history that we will not survey here. The refereed games model, and variations on this
model, were considered in the classical case in Refs. [17, 8,7, 14, 9, 6], among others. Much
of what is known about the complexity-theoretic aspects of the classical refereed games model is
due to Feige and Kilian [6]. The class of languages having classical refereed games in which the
provers may play any polynomial number of turns coincides with EXP (deterministic time2p(n) for
some polynomialp). The simulation ofEXP by a polynomial-turn refereed game is due to Feige
and Kilian [6], and is based on arithmetization technique developed by Lund, Fortnow, Karloff and
Nisan [15] and used in proofs ofIP = PSPACE [20, 21]. The containment of this class inEXP

is due to Koller and Megiddo [14]. On the other hand, the classof languages having games in
which the provers play precisely one turn each, with the turns played in parallel, coincides with
PSPACE [6]. Apparently little is known about the expressive power of classical refereed games
intermediate between these two extremes. For instance, games with a constant number of prover
turns may correspond toPSPACE, EXP, or some complexity class between the two.

Similar to the classical case, quantum refereed games are based on the quantum interactive
proof system model [22, 13]. Quantum refereed games differ from classical ones in that the provers
and the verifier may perform quantum computations and exchange quantum messages. Our two
main motives for considering the quantum refereed games model are to better understand the power
of quantum interactive proof systems and to examine the effect of quantum information on the
complexity of finding strategies for two-player games.

The main result of this paper establishes that any language having a quantum interactive proof
system also has a quantum refereed game with exponentially small probability of error wherein
each prover plays just one turn (with the yes-prover playingfirst). An interesting fact about the
resulting game from the point of view of understanding quantum interactive proofs is that entan-
glement between the provers and the verifier does not play anyrole in this game, and may without
loss of generality be assumed not to exist. More specifically, the game we define has the follow-
ing general form: the yes-prover sends the verifier a mixed quantum state, the verifier processes
this state and sends some state to the no-prover, and the no-prover measures the state and sends
a classical result to the verifier. The verifier checks the result of the measurement and accepts or
rejects.

A key ingredient for our result is an information-theoreticassertion stating that there exists a
quantum measurement that can reliably distinguish betweenstates chosen from two disjoint convex
sets of quantum states. This assertion generalizes a well-known fact about the relation between the
trace distance between two states and their distinguishability, and may be viewed as a quantitative
version, from the point of view of quantum information theory, of the fact from convex analysis
that disjoint convex sets are separated by some hyperplane.

The remainder of this paper is organized as follows. We beginby defining quantum refereed
games in Sect. 2. In Sect. 3 we prove the fact concerning measurements distinguishing convex sets
mentioned previously. Using this fact, we then prove in Sect. 4 that a two-turn quantum refereed
game exists for any languageL having a quantum interactive proof system. In Sect. 5 we describe a
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method for error reduction in two-turn quantum refereed games. The paper concludes with Sect. 6,
which mentions some open problems about quantum refereed games.

2 Definitions

In this section we define the quantum refereed games model andsome complexity classes based
on this model. Throughout the paper we assume all strings areover the alphabetΣ = {0, 1}. For
x ∈ Σ∗, |x| denotes the length ofx. We letpoly denote the set of polynomial-time computable
functionsf : N → N \ {0} for which there exists a polynomialp such thatf(n) ≤ p(n) for
all n. We also let2−poly denote the set of polynomial-time computable functionsε such that
ε(n) = 2−f(n) for all n for somef ∈ poly .

The model for quantum computation that provides a basis for quantum refereed games is the
quantum circuit model, with which we assume the reader is familiar. As mentioned in Sect. 1, a
quantum refereed game has a verifierV and two competing proversY andN . Each ofV , Y , andN
is defined by a mapping on input stringsx ∈ Σ∗ whereV (x), Y (x), andN(x) are each sequences
of quantum circuits. The circuits in these sequences are assumed to be composed only of gates
taken from some universal set of quantum gates. Thus, each ofthe circuits implements a unitary
operation on its input qubits. However, we lose no generality by allowing only unitary operations
because arbitrary admissible quantum operations, including measurements, can be simulated by
unitary circuits as described in Ref. [1].

For each prover, the qubits upon which that prover’s circuits act are partitioned into two sets:
one set of qubits is private to that prover and the other is shared with the verifier. These shared
qubits act as a quantum channel between the verifier and that prover. No restrictions are placed on
the complexity of the provers’ circuits, which captures thenotion that the provers’ computational
power is unbounded—each of the provers’ circuits can be viewed as an arbitrary unitary operation.

The qubits on which the verifier’s circuits act are partitioned into three sets: one set is private to
the verifier and two sets are shared with each of the provers. One of the verifier’s private qubits is
designated as theoutput qubit. At the end of the game, acceptance is dictated by a measurement of
the output qubit in the computational basis. We also requirethat the verifier’s sequence of circuits
V (x) be generated by a polynomial-time Turing machine on inputx. This uniformity constraint
captures the notion that the verifier’s computational poweris limited.

In addition to the verifier and provers, a quantum refereed game consists of aprotocol that
dictates the number and order of turns taken by the provers. The circuits in the verifier’s and
provers’ sequences are applied to the initial state in whicheach qubit is in state|0〉 in such a way
as to implement the protocol of the game.

The games we study in this paper have the following protocol:a message from the yes-prover
to the verifier, a message from the verifier to the no-prover, and a message from the no-prover
the the verifier. Quantum refereed games that follow this protocol will be calledshort quantum
games. We note that entanglement between the provers and the verifier is immaterial in games
of this form—each prover takes only one turn, and thus has no need to remember anything after
his turn ends. Thus, when convenient, we may assume that the provers do not have private qubits
but instead may perform arbitrary admissible quantum operations (i.e., completely positive trace-
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preserving maps) on their message qubits.
We now define the complexity classSQG based on short quantum games of the type just de-

scribed. Forc, s : N → [0, 1], the setSQG(c, s) consists of all languagesL ⊆ Σ∗ for which there
exists a verifierV for a short quantum game such that the following conditions hold:

1. There exists a yes-proverY such that, for all no-proversN and allx ∈ L, Y (x) convinces
V (x) to acceptx with probability at least1 − c(|x|); and

2. There exists a no-proverN such that, for all yes-proversY and allx 6∈ L, N(x) convinces
V (x) to rejectx with probability at least1 − s(|x|).

The functionsc ands are called thecompleteness errorandsoundness error, respectively. We
defineSQG

(

2−poly , 2−poly
)

to be the set of all languagesL ⊆ Σ∗ such thatL ∈ SQG(ε, ε) for
everyε ∈ 2−poly . Let us also writeSQG as shorthand forSQG

(

2−poly , 2−poly
)

.
The classQIP contains all problems having single-prover quantum interactive proof systems

as in Ref. [13]. The main complexity-theoretic result of thepresent paper states thatQIP ⊆ SQG.
We prove this result by exhibiting a short quantum game that solves a promise problem called the
CLOSE-IMAGES problem, which is known to be complete forQIP [13]. It is convenient for us to
use the formulation of this problem based on the one found in Ref. [19].

The promise problemCLOSE-IMAGES is defined for any desiredε ∈ 2−poly as follows. Given
are descriptions of two mixed state quantum circuitsQ0 andQ1, which both implement some ad-
missible (i.e., completely positive and trace-preserving) transformation fromn qubits tom qubits.
The promise is that exactly one of the following conditions holds:

1. There existn-qubit mixed statesρ0 andρ1 such thatQ0(ρ0) = Q1(ρ1); or

2. For alln-qubit mixed statesρ0 andρ1, the statesQ0(ρ0) andQ1(ρ1) have fidelity squared at
mostε(n).

In other words, the images ofQ0 andQ1 are either overlapping or are far apart. The goal is to
accept when case 1 holds and reject when case 2 holds.

3 Distinguishing Convex Sets of Quantum States

We motivate discussion in this section by pointing out that,for any mixed-state quantum circuitQ,
the imageA = {Q(ρ) : ρ a mixed state} of the admissible transformation associated withQ is a
compact, convex set of mixed states. If the images of two circuitsQ0 andQ1 are far apart, then one
could reasonably hope that there is a quantum measurement that reliably distinguishes between
outputsQ0(ρ0) andQ1(ρ1) of these transformations, with the measurement depending only onQ0

andQ1, and not on the choice of input statesρ0 andρ1. In this section we prove that indeed there
always exists such a measurement. More generally, we prove that given any two disjoint convex
sets of mixed quantum states, there exists a single measurement that distinguishes states drawn
arbitrarily from one set from the other with success probability determined by the minimal trace
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distance between the sets. The short quantum game for theCLOSE-IMAGES problem we define in
Sect. 4 relies heavily upon the existence of such a measurement.

Let us first begin with some notation. Given a finite dimensional Hilbert spaceH, let L(H)
denote the set of all linear operators onH, letH(H) denote the set of all Hermitian operators onH,
let Pos(H) denote the set of all positive semidefinite operators onH, and letD(H) denote the set
of all density operators (i.e., unit trace positive semidefinite operators) onH. ForA,B ∈ L(H),
define〈A,B〉 = trA†B. This is an inner product onL(H) that is sometimes called the Hilbert-
Schmidt inner product.

For a vector|ψ〉 ∈ H, ‖|ψ〉‖ denotes the Euclidean norm of|ψ〉. For an operatorA ∈ L(H),
the operator norm ofA, denoted‖A‖, is defined by

‖A‖ = sup
|ψ〉∈H\{0}

‖A|ψ〉‖
‖|ψ〉‖ .

The trace norm ofA, denoted‖A‖tr, is defined by‖A‖tr = tr
√
A†A. The trace norm and the

operator norm are dual to one another with respect to the Hilbert-Schmidt inner product, meaning
that the following fact holds.

Fact 1. For everyA ∈ L(H),

‖A‖ = max {|〈B,A〉| : B ∈ L(H), ‖B‖tr ≤ 1} ,
‖A‖tr = max {|〈B,A〉| : B ∈ L(H), ‖B‖ ≤ 1} .

See, for instance, Bhatia [5] for a proof of this fact.
The trace norm characterizes the distinguishability of a given pair of density matricesρ0, ρ1 ∈

D(H) in the following sense. There exists a binary-valued quantum measurement such that if
ρ ∈ {ρ0, ρ1} is chosen uniformly at random, then the measurement correctly determines which
of ρ0 or ρ1 was given with probability1

2
+ 1

4
‖ρ0 − ρ1‖tr. Furthermore, such a measurement is

optimal in the sense that no other quantum measurement can possibly distinguish betweenρ0 and
ρ1 with a higher success rate. An immediate corollary of this fact is that for a given pairρ0 andρ1,
there exists a measurement that correctly identifies a chosen stateρ ∈ {ρ0, ρ1} with probability of
correctness at least1

2
‖ρ0 − ρ1‖tr, even ifρ is chosen by an adversary that knows the measurement.

Consider the following variant of the distinguishability problem: We are givenρ ∈ D(H)
chosen from one of two disjoint convex sets of density operatorsA0,A1 ⊆ D(H), and we are
asked to determine the set from whichρ was chosen. For simplicity we will assumeA0 andA1

are closed sets. Under this assumption, it is meaningful to define the trace distancedist(A0,A1)
betweenA0 andA1 as the minimum of the quantity‖ρ0 − ρ1‖tr over all choices ofρ0 ∈ A0 and
ρ1 ∈ A1. We prove that there exists a single measurement with the property that if an arbitraryρ
is chosen fromA0 with probability 1/2, and otherwiseρ is chosen fromA1, then the measurement
correctly determines which setρwas chosen from with probability at least1

2
+ 1

4
dist(A0,A1). This

fact therefore generalizes the fact concerning a single pair of quantum states mentioned above, as
singleton sets are of course closed and convex. As above, this fact implies that ifρ is chosen from
A0 ∪A1 in an arbitrary manner, even depending on the measurement itself, then the measurement
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will correctly determine from which ofA0 or A1 the stateρ was chosen with probability at least
1
2
dist(A0,A1).

The proof of this fact begins with a well-known result from convex analysis, which informally
states that there exists a separating hyperplane between any two disjoint convex sets. Typically,
the separation result is stated in terms of the vector spaceR

n, but it translates toH(H) for a
given spaceH without complications, asH(H) may be identified with the vector spaceR

m2

,
for m = dim(H). Here we state a restricted variant of this fact that is most convenient for our
purposes—see Rockafellar [18], for instance, for a more general statement.

Fact 2. LetA,B ⊆ H(H) be disjoint convex sets withA compact andB open. Then there exists a
Hermitian operatorH ∈ H(H) and a real numbera ∈ R such that〈H,X〉 ≥ a > 〈H, Y 〉 for all
X ∈ A andY ∈ B.

We are now ready to state and prove the main result of this section.

Theorem 3. Let A0,A1 ⊆ D(H) be closed convex sets of density operators. Then there exist
measurement operatorsE0, E1 ∈ Pos(H) with E0 + E1 = I such that the following holds. For
every pairρ0 ∈ A0 and ρ1 ∈ A1, if ρ is chosen uniformly from{ρ0, ρ1} and measured via the
measurement{E0, E1}, the measurement will correctly determine whetherρ ∈ A0 or ρ ∈ A1 with
probability at least1

2
+ 1

4
dist(A0,A1).

Proof. Let d = dist(A0,A1). If d = 0, the theorem is trivially satisfied by the measurement
defined byE0 = E1 = 1

2
I (which is equivalent to a random coin-flip), so assume thatd > 0. Let

A = A0 −A1 = {ρ0 − ρ1 : ρ0 ∈ A0, ρ1 ∈ A1}.

ThenA is a compact convex set of Hermitian operators and‖X‖tr ≥ d for everyX ∈ A. Let

B = {Y ∈ H(H) : ‖Y ‖tr < d}

denote the open ball of radiusd in H(H) with respect to the trace norm. The setsA andB satisfy
the conditions of Fact 2, and therefore there exists a Hermitian operatorH ∈ H(H) and a real
numbera ∈ R such that〈H,X〉 ≥ a > 〈H, Y 〉 for all X ∈ A andY ∈ B. BecauseY ∈ B if and
only if −Y ∈ B for everyY , it follows that−a < a, and thereforea > 0.

Let K = d
a
H. We therefore have that〈K,X〉 ≥ d for everyX ∈ A and〈K, 1

d
Y 〉 < 1 for

everyY ∈ B. As 1
d
Y ranges over all Hermitian operators with trace norm smallerthan 1, this

implies‖K‖ ≤ 1 by Fact 1. Now, letK+, K− ∈ Pos(H) denote the positive and negative parts
of K, meaning that they satisfyK = K+ −K− and〈K+, K−〉 = 0. As ‖K‖ ≤ 1 it follows that
K+ +K− ≤ I.

At this point we defineE0, E1 ∈ Pos(H) as follows:

E0 = K+ +
1

2
(I −K+ −K−) and E1 = K− +

1

2
(I −K+ −K−).

The operatorsE0 andE1 are both positive semidefinite and satisfyE0 + E1 = I, and therefore
represent a binary-valued POVM.

6



Now supposeρ0 ∈ A0 andρ1 ∈ A1 are chosen arbitrarily, andρ is chosen uniformly from the
set{ρ0, ρ1}. LetC denote the event that the measurement{E0, E1} correctly determines which of
ρ0 andρ1 was selected. We havePr[C] = 1

2
〈E0, ρ0〉 + 1

2
〈E1, ρ1〉, and therefore

Pr[C] − Pr[¬C] =
1

2
〈E0 − E1, ρ0 − ρ1〉 =

1

2
〈K, ρ0 − ρ1〉 ≥

d

2
,

with the inequality following from the fact thatρ0 − ρ1 ∈ A. Consequently the measurement is
correct with probability at least1

2
+ d

4
as required.

As before, it follows from this theorem that the measurement{E0, E1} will correctly identify
an arbitrary choice ofρ ∈ A0 ∪A1 with probability at least1

2
dist(A0,A1).

4 A Short Quantum Game for QIP

In this section, we prove that any language with a quantum interactive proof system also has a short
quantum game by solving theQIP-complete problemCLOSE-IMAGES from Sect. 2.

First, let us recall that the fidelityF (ρ, ξ) between two quantum statesρ, ξ ∈ D(H) is defined
asF (ρ, ξ) =

∥

∥

√
ρ
√
ξ
∥

∥

tr
. The following fact, proved by Fuchs and van de Graaf [10], gives one

relationship between the fidelity and the trace norm.

Fact 4. Letρ, ξ ∈ D(H). Then

1 − 1

2
‖ρ− ξ‖tr ≤ F (ρ, ξ) ≤

√

1 − 1

4
‖ρ− ξ‖tr.

We are now ready to state and prove the main result of this section.

Theorem 5. QIP ⊆ SQG
(

1/2, 2−poly
)

.

Proof. It suffices to show thatCLOSE-IMAGES is in SQG(1/2, 2−poly). Suppose the input encodes
mixed state quantum circuitsQ0 andQ1, each mappingn qubits tom qubits. LetH andK be
Hilbert spaces with dimensions2n and2m corresponding to then input qubits andm output qubits
respectively. We may viewQ0 andQ1 as corresponding to admissible transformationsQ0, Q1 :
D(H) → D(K). Let Ai = {Qi(ρ) : ρ ∈ D(H)} ⊆ D(K) denote the image ofQi for i = 0, 1.
The setsA0 andA1 are closed, convex sets of density operators.

Consider the following verifier for a short quantum game:

1. Receiven-qubit registersX0 andX1 from the yes-prover.

2. Choosei ∈ {0, 1} uniformly at random and applyQi to registerXi. Let the output be
contained in anm-qubit registerY, which is then sent to the no-prover.

3. Receive a classical bitb from the no-prover. Accept ifb 6= i and reject ifb = i.
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If (Q0, Q1) is a “yes” instance ofCLOSE-IMAGES then there existρ0, ρ1 ∈ D(H) such that
Q0(ρ0) = Q1(ρ1). The strategy for the yes-prover is to prepare the registersX0 andX1 in statesρ0

andρ1, respectively, and to send them to the verifier in step 1 of theverifier’s protocol. Because
Q0(ρ0) = Q1(ρ1), the state contained in the registerY is independent ofi, so the no-prover can do
no better than randomly guessing in step 3. The verifier will therefore accept with probability1/2
in this case.

If (Q0, Q1) is a “no” instance ofCLOSE-IMAGES then for any desiredε ∈ 2−poly we are
promised that

√

ε(n) ≥ max
ξ0,ξ1∈D(H)

{F (Q0(ξ0), Q1(ξ1))} ≥ 1 − 1

2
dist(A0,A1).

It follows thatdist(A0,A1) ≥ 2 − 2
√

ε(n).
Regardless of the state of the registersX0 andX1 sent to the verifier by the yes-prover, we

must have that the reduced state of the registerY sent to the no-prover is given by some state
ξ ∈ A0 ∪ A1, and moreover thatPr[ξ ∈ A0] = Pr[ξ ∈ A1] = 1/2. By Theorem 3 there exists
a quantum measurement{E0, E1} that correctly determines whetherρ ∈ A0 or ρ ∈ A1 with
probability at least

1

2
+

1

4
dist(A0,A1) ≥ 1 −

√

ε(n)

2
.

The strategy for the no-prover is to perform the quantum measurement{E0, E1} and send the result
to the verifier in step 3. This causes the verifier to reject with probability at least1−

√

ε(n)/2. As
this argument holds for everyε ∈ 2−poly , we have that the soundness error is2−poly as required.

5 Error Reduction

Suppose that both the completeness and soundness errorc ands of a refereed game are bounded
below1/2 by an inverse polynomial. Then it follows from Chernoff bounds that these error prob-
abilities can be made exponentially close to zero by repeating the game a polynomial number
of times in succession and taking a majority vote. Of course,sequential repetition necessarily in-
creases the number of turns in the game and so it is natural to ask if error reduction can be achieved
without affecting the turn complexity of the game.

A natural approach to this task is to run many copies of the refereed game in parallel and to
accept or reject based on the outcomes of the repetitions. This technique is purely classical and
has been successfully applied to classical single- and multi-prover interactive proof systems (see
for example Ref. [16] and the references therein). A potential problem with this technique is that
the provers need not treat each repetition independently—they might try to correlate the parallel
repetitions (or entangle them in the quantum case) in some devious way such that the completeness
and/or soundness error does not decrease as desired.

In the quantum setting, the general case of this problem has not been completely solved. But
for three-message single-prover quantum interactive proof systems with zero completeness error,
Ref. [13] proves that parallel repetition followed by a unanimous vote does indeed achieve the
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exponential reduction in soundness error that one might expect, regardless of any possible entan-
glement by the prover among the parallel copies.

In this section, we prove that parallel repetition followedby a unanimous vote can be used to
improve the error bounds for short quantum games by reducingthe problem to error reduction for
single-prover quantum interactive proof systems with three or fewer messages. The reduction is
achieved by fixing a yes- or no-proverP that is guaranteed to win with a certain probability. By
viewing the verifier-prover pair(V, P ) as a new composite verifier, we are left with what is now
effectively a one- or two-message quantum interactive proof system in which the opposing prover
is the lone prover. We define a verifier-prover pair(V ′, P ′) that runs many copies of(V, P ) in
parallel and accepts based on a unanimous vote. We can then employ the error reduction result
of Ref. [13] to prove that the error of the new game decreases exponentially in the number of
repetitions.

We formalize this argument shortly, but first we require additional notation. Given finite-
dimensional Hilbert spacesH andK, let L(H,K) denote the set of all linear operators mapping
H to K and letT(H,K) denote the set of all linear operators mapping the vector spaceL(H) to
L(K). The trace norm can be extended toT(H,K) as follows. ForT ∈ T(H,K),

‖T ‖tr = sup
X∈L(H)\{0}

‖T (X)‖tr

‖X‖tr

.

LetL be a Hilbert space withdim(L) = dim(H) and letIL(L) denote the identity transformation on
L(L). Then forT ∈ T(H,K), thediamond norm‖T ‖⋄ of T is given by‖T ‖⋄ =

∥

∥T ⊗ IL(L)

∥

∥

tr
.

Further information on the diamond norm may be found in Kitaev, Shen, and Vyalyi [12]. The
diamond norm satisfies several nice properties that the trace norm (extended toT(H,K)) does not.
For example, the diamond norm is multiplicative with respect to tensor products:‖T1 ⊗ T2‖⋄ =
‖T1‖⋄ ‖T2‖⋄ for any choice of transformationsT1 andT2.

We are now prepared to give the main result of this section, whose proof is based on the proof
of Theorem 6 of Ref. [13].

Theorem 6. SQG(c, s) ⊆ SQG(kc, sk) ∩ SQG(ck, ks) for any choice ofc, s : N → [0, 1] and
k ∈ poly.

Proof. We first prove thatSQG(c, s) ⊆ SQG(kc, sk). Let L ∈ SQG(c, s) and letV (x) = (V (x)1,
V (x)2) be a verifier witnessing this fact. For the remainder of this proof, we assume that the input
x ∈ Σ∗ is fixed. For brevity we drop the argument and writeV = (V1, V2) and use similar notation
for the provers.

LetV ′ = (V ⊗k
1 , V ⊗k

2 ) be a verifier that runsk copies of the protocol ofV in parallel and accepts
if and only if every one of thek copies accepts. We must show thatV ′ has completeness error at
mostkc and soundness error at mostsk.

First consider the casex ∈ L. LetY = (Y1) be a yes-prover that always convincesV to accept
with probability at least1 − c. Let Y ′ = (Y ⊗k

1 ) be a yes-prover that runsk independent copies of
the protocol ofY in parallel. Then no no-prover can win any one of thek copies with probability
greater thanc and so by the union bound we know that the completeness error of the repeated game
is at mostkc.
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Next consider the casex 6∈ L. LetN = (N1) be a no-prover that always convincesV to reject
with probability at least1 − s. LetN ′ = (N⊗k

1 ) be a no-prover that runsk independent copies of
the protocol ofN in parallel. We now show that no yes-prover can win againstN ′ using verifier
V ′ with probability greater thansk.

Let Πinit denote the projection of the entire system onto the all-|0〉 initial state. Then the pro-
jection Π′

init = Π⊗k
init corresponds to the initial state of the repeated game. LetΠacc denote the

projection onto the states for which the output qubit belonging to V is 1. Then the projection
Π′

acc = Π⊗k
acc corresponds to the accepting state ofV ′. LetVN denote the Hilbert space correspond-

ing to the private qubits ofV and the private and message qubits ofN and letMY denote the
Hilbert space corresponding to the yes-prover’s message qubits. DefineTN ∈ T(VN ⊗MY ,MY )
as

TN (X) = trVN
(Πinit)X(ΠaccV2N1V1).

As mentioned earlier, we may view(V,N) as a new composite verifier and the yes-prover as
the lone prover for some one-message quantum interactive proof system (i.e., a message from the
prover to(V,N)). In this context, Lemma 7 of Ref. [13] asserts that the maximum probability
with which any prover could convince the verifier(V,N) to acceptx is precisely‖TN ‖2

⋄ . Because
(V,N) has soundness error at mosts, we have‖TN ‖2

⋄ ≤ s.
Define a similar transformationT ′

N ∈ T((VN ⊗MY )⊗k,M⊗k
Y ) usingV ′, N ′, Π′

init, andΠ′
acc.

It follows that T ′
N = T⊗k

N . From the multiplicativity of the diamond norm, it follows that the
maximum probability with which any prover could convince(V ′, N ′) to acceptx is

‖T ′
N ‖

2
⋄ =

∥

∥T⊗k
N

∥

∥

2

⋄
= ‖TN ‖2k

⋄ ≤ sk,

which establishes the desired result.
Due to the symmetric nature of quantum refereed games, we canmodify the above proof to

show thatSQG(c, s) ⊆ SQG(ck, ks). In particular, define the verifierV ′′ so that he rejects if and
only if all k copies reject. For the casex 6∈ L, the proof thatV ′′ has soundness errorks is
completely symmetric to the proof thatV ′ has completeness errorkc.

For the casex ∈ L, we letY andY ′ be yes-players as above. Define the Hilbert spacesVY and
MN and the projectionsΠrej andΠ′

rej in the appropriate symmetric manner as per the above proof.
The transformationTY ∈ T(VY ⊗MN ,MN) is defined as

TY (X) = trVY
(V1Y1Πinit)X(ΠrejV2).

As before, we may view(V, Y ) as a new composite verifier and the no-prover as the lone prover
for some quantum interactive proof system. The differenceshere are that the quantum interactive
proof is now a two-message proof instead of a one-message proof (i.e., a message from(V, Y ) to
the prover followed by the prover’s reply to(V, Y )) and that the prover’s goal is now to convince
the verifier(V, Y ) to rejectx instead of to acceptx.

Fortunately, it is still straightforward to apply Lemma 7 ofRef. [13] to this quantum interactive
proof system and so we may claim that the maximum probabilitywith which any prover could
convince the verifier(V, Y ) to rejectx is precisely‖TY ‖2

⋄ . That V ′′ has completeness errorck

follows as before.
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The proof of Theorem 6 can be extended to allow for the slightly more general protocol wherein
the verifier sends a message to the yes-prover (via some circuit Vinit) before the short quantum game
commences. This extension follows from the fact that we can apply Lemma 7 of Ref. [13] to the
augmented transformations

TN(X) = trVN
(VinitΠinit)X(ΠaccV2N1V1),

TY (X) = trVY
(V1Y1VinitΠinit)X(ΠrejV2).

Combining Theorems 5 and 6 we obtain the following corollary, which is the main result of
this paper.

Corollary 7. QIP ⊆ SQG.

Proof. Given a desired error bound2−p wherep ∈ poly, chooseε ∈ 2−poly so thatpε ≤ 2−p. We
haveQIP ⊆ SQG (1/2, ε) ⊆ SQG (2−p, 2−p) .

6 Conclusion

We introduced in this paper the quantum refereed game model of computation and gave a short
quantum game with exponentially small error for languages with single-prover quantum interactive
proof systems. However, we have only scratched the surface of the quantum games model, and
many questions about it remain unanswered. Some examples follow.

• The two-turn game presented in this paper has an asymmetric protocol. Is there also a two-
turn quantum refereed game forQIP in which the no-prover sends the first message, or in
which the provers play one turn in parallel?

• It is known thatQIP ⊆ EXP. How doesSQG relate toEXP?

• We mentioned in Sect. 1 that classical refereed games characterizeEXP [6], which implies
that many-turn quantum refereed games are at least as powerful asEXP. What upper bounds
can be proved on the power of refereed quantum games?

• We demonstrated that parallel repetition followed by a unanimous vote can reduce error for
short quantum games. Is there a way to reduce the error inany quantum refereed game
without affecting the number of turns in the game?
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