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Introduction to Quantum Information

For the remainder of this lecture we will take a first look at quantum information, a concept upon
which quantum computation is based.

A probabilistic model

It is helpful to start classically, with a model that will probably seem completely simple to every-
one. Imagine that we have some physical device, calledX, that has some finite, non-empty setΣ
of possiblestates1. For example, we might haveΣ = {0, 1}, in which case we would think ofX as
representing a bit. For the following discussion let us restrict ourselves to this example (but keep
in mind that everything can easily be generalized to sets other than{0, 1}).

Suppose that we do not necessarily have complete information about the state ofX, but instead
represent our knowledge of its state by assigning probabilities to the different states. For example,
we might have

Pr[state ofX is 0] = 1/4,

Pr[state ofX is 1] = 3/4.

Mathematically we can represent this type of knowledge about the state ofX with a probability
vector, which is a column vector whose entries are all nonnegative real numbers that sum to 1. In
the case at hand, the associated probability vector is

v =

(

1/4

3/4

)

.

1Shortly we will change our terminology and use the termclassical states to refer to elements ofΣ, because the
termstate will be used in a different context. Nevertheless, for the time being we will stick with the termstate when
referring to elements of the setΣ.
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The understanding is that the entries ofv are indexed byΣ, and when we write such a vector in the
above form we are using the most natural way of ordering the elements ofΣ:

v =

(

1/4

3/4

)

← entry indexed by 0

← entry indexed by 1

We may writev[0] andv[1] to refer to the entries ofv when necessary.
What happens when you look atX? Of course you will not see a probability vectorv. Instead

you will see some element ofΣ. If our representation of the state ofX by a probability vectorv is
in some way meaningful, you may as well imagine that the stateyou saw was determined randomly
according to the probabilities associated with the variousstates. Notice that by looking at the state
of X you effectively change the description of your knowledge ofits state. Continuing with the
example above, if you look and see that the state is 0, the description of your knowledge changes
from v to a new probability vectorw:

v =

(

1/4

3/4

)

−→ w =

(

1

0

)

.

You know that the state is 0, and the vectorw represents this knowledge. If you saw that the state
was 1 instead of 0, the vector would become

(

0
1

)

instead.
What sorts of operations can you imagine performing onX? There are not very many deter-

ministic operations: you could initializeX to either 0 or 1, you could perform a NOT operation to
X, or you could do nothing toX (which can still be considered an operation even though it has no
effect). You could also perform an operation involving randomness—for instance perform a NOT
operation with probability 1/100, and otherwise do nothing. I claim that anyphysically meaningful
operation can be represented by a matrix, with the effect of the operation being determined by
matrix-vector multiplication. For instance, these four matrices

INIT0 =

(

1 1
0 0

)

, INIT1 =

(

0 0
1 1

)

, NOT =

(

0 1
1 0

)

, and I =

(

1 0
0 1

)

represent the deterministic operators mentioned above. For example, if our knowledge of the state
of X is represented by

v =

(

1/4

3/4

)

and we perform a NOT operation onX, the new probability vector that results is

w =

(

0 1

1 0

)(

1/4

3/4

)

=

(

3/4

1/4

)

.
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The probabilistic operation mentioned above is represented by the matrix
(

99

100

1

100

1

100

99

100

)

.

All of these matrices have the property that (i) all entries are nonnegative real numbers, and (ii) the
entries in each column sum to 1. In other words, every column is a probability vector. Such
matrices have a name: they are calledstochastic matrices. In the simple model we are discussing,
physically meaningful operations are described by stochastic matrices. It works the other way as
well; any stochastic matrix describes some physically meaningful operation.

As mentioned before, this entire picture is easily generalized to the case whereΣ is not nec-
essarily{0, 1}. In general the dimension of the vectors and matrices will beequal to the size
of Σ.

Quantum bits (qubits)

The framework of quantum information works in a similar way to the simple probabilistic model
we just saw, but with some key differences. Let us again imagine that we have a physical device
calledX. As before we imagine that there is some setΣ of possible states ofX, and we will again
consider for now just the simple caseΣ = {0, 1}. At this point, to avoid confusion let us now refer
to elements ofΣ asclassical states rather than juststates. Intuitively you can think of a classical
state that you as a human can look at, touch, and recognize without ambiguity. The deviceX will
represent the quantum analogue of a bit, which we call aqubit.

We will still represent our knowledge2 of X with column vectors indexed byΣ, but this time
they will not be probability vectors. Instead of representing probability distributions, the vectors
represent what we call asuperposition or just astate (by which we mean aquantum state). For
example, here are a few vectors representing superpositions:

(

1√
2

− 1√
2

)

,

(

1

0

)

,

(

3

5

4i

5

)

.

Notice that the entries in these vectors are not probabilities: they are not necessarily nonnegative
(in fact they are not even necessarily real numbers), and they do not necessarily sum to 1. We call
these numbersamplitudes instead of probabilities. The condition that replaces the probabilities
summing to 1 in a probability vector is this: vectors representing superpositions have Euclidean
length equal to 1. In the simple case at hand whereΣ = {0, 1}, this means that any vector
representing a superposition has the form

(

α

β

)

2We discussed briefly in the lecture whether or not the column vectors represent knowledge in the same sense as
the probabilistic model or something more “actual”. My choice of the word “knowledge” is really only intended to
stress the similarity with the probabilistic model; and although the question makes for an interesting philosophical
discussion, I don’t intend that this course will go in that direction. As soon as possible we will be treating everything
mathematically and just thinking of these things as vectors.
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for α, β ∈ C satisfying|α|2 + |β |2 = 1.
Similar to the probabilistic case, if you look at the qubitX you will not see a superposition.

Instead, you will see either0 or 1 just like before. The probability associated with the two possible
outcomes is given by the absolute value squared of the associated amplitude—so if the superposi-
tion ofX is represented by the vector

(

α

β

)

and you look atX, you will see 0 with probability|α|2 and 1 with probability|β |2. This is why
we have the condition|α|2 + |β |2 = 1, because the probabilities have to sum to 1 for the model to
make sense. The same rules apply as for the probabilistic case for determining the superposition
of X after you look at it: the superposition becomes

(

1

0

)

or

(

0

1

)

depending on whether you see 0 or 1, respectively.
So far the model does not seem qualitatively different from the probabilistic model, but that

changes a lot when the possible operations that can be performed are considered. Again the pos-
sible operations are represented by matrices; but now instead of being stochastic matrices, the
matrices that represent valid physical operations correspond tounitary matrices. A matrix is uni-
tary if and only if it preserves the Euclidean norm. Fortunately there is a very simple condition to
check this: a matrixU is unitary if and only if

U †U = I,

whereU † is the conjugate transpose ofU (meaning that you take the transpose ofU and then take
the complex conjugate of each of the entries). For example, these are unitary matrices:

H =

(

1√
2

1√
2

1√
2
− 1√

2

)

, I =

(

1 0

0 1

)

, NOT =

(

0 1

1 0

)

, Rθ =

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)

(for any real numberθ in the case ofRθ). For example, ifX is in a superposition described by

v =

(

1

0

)

and the operation corresponding to the matrixH (called the Hadamard transform) is performed,
the superposition becomes

Hv =

(

1√
2

1√
2

1√
2
− 1√

2

)(

1

0

)

=

(

1√
2

1√
2

)

.
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If you measuredX at this point you would see outcome 0 or 1, each with probability 1/2. If
you didn’t measure and instead applied the Hadamard transform again, the superposition would
become

(

1√
2

1√
2

1√
2
− 1√

2

)(

1√
2

1√
2

)

=

(

1

0

)

.

To recapitulate, these are the two things you can do to a qubit:

1. Perform a measurement. If the superposition of the qubit is

(

α

β

)

and a measurement is performed, the outcome is 0 or 1, with probabilities|α|2 and |β |2, re-
spectively. The superposition of the qubit becomes

(

1

0

)

or

(

0

1

)

,

depending on whether the measurement outcome was 0 or 1.

2. Perform a unitary operation. For any unitary matrixU , the operation described byU trans-
forms any superpositionv into the superpositionUv.

Later on in the course we will see that there are somewhat moregeneral operations and mea-
surements that can be performed, but this simple model will turn out to be sufficient for discussing
quite a lot about quantum computing.

Example 1. Suppose your friend has a qubit that he knows is in one of the two superpositions

v0 =

(

1√
2

1√
2

)

or v1 =

(

1√
2

− 1√
2

)

,

but he isn’t sure which. How can you help him determine which one it is?
Measuring right away will not help—you would see a random bitin either case. Instead, you

should perform the Hadamard transform and then measure. Performing the Hadamard transform
changes the superpositions as follows:

Hv0 =

(

1

0

)

and Hv1 =

(

0

1

)

.

Now if you measure, you will see 0 (with certainty, meaning probability 1) if the original superpo-
sition wasv0 and you will see 1 (with certainty) if the original superposition wasv1.
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