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I ntroduction to Quantum | nfor mation

For the remainder of this lecture we will take a first look aaguum information, a concept upon
which quantum computation is based.

A probabilistic model

It is helpful to start classically, with a model that will grably seem completely simple to every-
one. Imagine that we have some physical device, calgtiat has some finite, non-empty 3et
of possiblestatest. For example, we might have = {0, 1}, in which case we would think of as
representing a bit. For the following discussion let usriesburselves to this example (but keep
in mind that everything can easily be generalized to setsrdbtian{0, 1}).

Suppose that we do not necessarily have complete informaktiout the state of, but instead
represent our knowledge of its state by assigning proltigsilio the different states. For example,
we might have

Pr[state ofX is 0] = 1/4,
Pr[state ofX is 1] = 3/4.

Mathematically we can represent this type of knowledge abiwaistate oX with a probability
vector, which is a column vector whose entries are all nonnegagigenumbers that sum to 1. In
the case at hand, the associated probability vector is

(1A
. (3/4) .

1Shortly we will change our terminology and use the tetassical states to refer to elements of, because the
termstate will be used in a different context. Nevertheless, for timeetibeing we will stick with the terrstate when
referring to elements of the sBt




The understanding is that the entries/@fre indexed by, and when we write such a vector in the
above form we are using the most natural way of ordering tbeehts of_:

(1/4) + entry indexed by 0

B 3/4) < entry indexed by 1

We may writev[0] andwv[1] to refer to the entries af when necessary.

What happens when you look 4P Of course you will not see a probability vectorinstead
you will see some element &f. If our representation of the state ¥fby a probability vectow is
in some way meaningful, you may as well imagine that the gtatesaw was determined randomly
according to the probabilities associated with the vargiates. Notice that by looking at the state
of X you effectively change the description of your knowledgeatefstate. Continuing with the
example above, if you look and see that the state is O, theigésn of your knowledge changes
from v to a new probability vectow:

() = ~-0)

You know that the state is 0, and the vectorepresents this knowledge. If you saw that the state
was 1 instead of 0, the vector would become

0
1
instead.

What sorts of operations can you imagine performing<@nThere are not very many deter-
ministic operations: you could initializ¢ to either 0 or 1, you could perform a NOT operation to
X, or you could do nothing tX (which can still be considered an operation even thoughstita
effect). You could also perform an operation involving ramthess—for instance perform a NOT
operation with probability 1/100, and otherwise do nothihgaim that anyphysically meaningful
operation can be represented by a matrix, with the effech@fdperation being determined by
matrix-vector multiplication. For instance, these fourtrices

INIT, = <(1] (1]) INIT, = (g 2) NOT = <(1] (1]) and T = <(1] (1])

represent the deterministic operators mentioned abovexeonple, if our knowledge of the state

of X is represented by
1/4
U g
3/4

and we perform a NOT operation &) the new probability vector that results is

(o) (-0
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The probabilistic operation mentioned above is represioyehe matrix

9 1L
100 100
199
100 100

All of these matrices have the property that (i) all entriesrsonnegative real numbers, and (ii) the
entries in each column sum to 1. In other words, every colusna probability vector. Such
matrices have a name: they are caksmthastic matrices. In the simple model we are discussing,
physically meaningful operations are described by staachasatrices. It works the other way as
well; any stochastic matrix describes some physically nmeginl operation.

As mentioned before, this entire picture is easily geneedlito the case whete is not nec-
essarily{0,1}. In general the dimension of the vectors and matrices wilegeal to the size
of X..

Quantum bits (qubits)

The framework of quantum information works in a similar waythe simple probabilistic model
we just saw, but with some key differences. Let us again im&athiat we have a physical device
calledX. As before we imagine that there is someXSeif possible states of, and we will again
consider for now just the simple caSe= {0, 1}. At this point, to avoid confusion let us now refer
to elements ok asclassical states rather than jusstates. Intuitively you can think of a classical
state that you as a human can look at, touch, and recognirewviambiguity. The devick will
represent the quantum analogue of a bit, which we cauilt.

We will still represent our knowleddeof X with column vectors indexed by, but this time
they will not be probability vectors. Instead of represegtprobability distributions, the vectors
represent what we call superposition or just astate (by which we mean guantum state). For
example, here are a few vectors representing superpasition

(5) 6 ()

Notice that the entries in these vectors are not probaslitihey are not necessarily nonnegative
(in fact they are not even necessarily real numbers), anddb@ot necessarily sum to 1. We call
these numberamplitudes instead of probabilities. The condition that replaces trababilities
summing to 1 in a probability vector is this: vectors représey superpositions have Euclidean
length equal to 1. In the simple case at hand where- {0, 1}, this means that any vector
representing a superposition has the form

(a)
g

2We discussed briefly in the lecture whether or not the colugsiors represent knowledge in the same sense as
the probabilistic model or something more “actual”. My a®bf the word “knowledge” is really only intended to
stress the similarity with the probabilistic model; anchaligh the question makes for an interesting philosophical

discussion, | don’t intend that this course will go in thatdtion. As soon as possible we will be treating everything
mathematically and just thinking of these things as vectors
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for a, 8 € C satisfying|a|> + | 8]* = 1.

Similar to the probabilistic case, if you look at the quKityou will not see a superposition.
Instead, you will see eithéror 1 just like before. The probability associated with the twagible
outcomes is given by the absolute value squared of the atedamplitude—so if the superposi-
tion of X is represented by the vector

[0
(3

and you look afX, you will see 0 with probability«|* and 1 with probabilityl 3|>. This is why

we have the conditiofn|* + | 3|* = 1, because the probabilities have to sum to 1 for the model to
make sense. The same rules apply as for the probabilisicfoasletermining the superposition
of X after you look at it: the superposition becomes

(o) o ()

depending on whether you see 0 or 1, respectively.

So far the model does not seem qualitatively different from probabilistic model, but that
changes a lot when the possible operations that can be pedioare considered. Again the pos-
sible operations are represented by matrices; but nowadsté being stochastic matrices, the
matrices that represent valid physical operations coomdpounitary matrices. A matrix is uni-
tary if and only if it preserves the Euclidean norm. Fortehathere is a very simple condition to
check this: a matriX/ is unitary if and only if

Ul =1,

whereUT is the conjugate transpose Bf(meaning that you take the transposé/ofind then take
the complex conjugate of each of the entries). For examipéset are unitary matrices:

g (% % )7 S (1 0)7 NOT — (0 1)7 Ry — (COS(Q) —sin(@))
% —\% 0 1 10 sin(f)  cos(0)

(for any real numbe# in the case ofzy). For example, iX is in a superposition described by

()

and the operation corresponding to the matfiicalled the Hadamard transform) is performed,
the superposition becomes

1 1 1
v vi) Y vz

—_ S|>i
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If you measuredX at this point you would see outcome 0 or 1, each with prokghlli2. If
you didn’t measure and instead applied the Hadamard transdgain, the superposition would

become
R 1 1
V22 VAN
R )\
V2 V2 V2
To recapitulate, these are the two things you can do to a:qubit

1. Perform a measurement. If the superposition of the qubit is
(3
g

and a measurement is performed, the outcome is 0 or 1, withapiiities |a|> and| 3|, re-
spectively. The superposition of the qubit becomes

o) = ()

depending on whether the measurement outcome was 0 or 1.
2. Perform a unitary operation. For any unitary matrix/, the operation described &y trans-
forms any superpositioninto the superpositiofyv.

Later on in the course we will see that there are somewhat gemeral operations and mea-
surements that can be performed, but this simple modelwvill dut to be sufficient for discussing
quite a lot about quantum computing.

Example 1. Suppose your friend has a qubit that he knows is in one of thestyerpositions

L L
V2 V2

but he isn’t sure which. How can you help him determine which t is?

Measuring right away will not help—you would see a randomrbgither case. Instead, you
should perform the Hadamard transform and then measurériang the Hadamard transform
changes the superpositions as follows:

1 0
Hug = < ) and Hv, = ( )
0 1

Now if you measure, you will see 0 (with certainty, meaningh@ability 1) if the original superpo-
sition wasv, and you will see 1 (with certainty) if the original supergasi wasv; .



