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Abstract

This paper proves that for n ≥ 3, the subspace of Cn ⊗ Cn that is orthogonal to any one
maximally entangled vector does not have an orthonormal basis that can be perfectly distin-
guished by means of local operations and classical communication. As a corollary of this fact,
descriptions of quantum channel are given that have sub-optimal classical capacity even when
the receiver may communicate classically with a third party that represents the channel’s en-
vironment. The existence of subspaces and channels with these properties was previously es-
tablished by Gregoratti and Werner [GW03] by a non-constructive proof for high-dimensional
spaces—this paper therefore provides explicit proofs of these facts.

1 Introduction

One of the main goals of the theory of quantum information in recent years has been to understand
the powers and limitations of LOCC protocols. These are protocols wherein two or more physically
separated parties possess the ability to perform arbitrary operations on local quantum systems
and to communicate with one another, but only classically. The paradigm of LOCC, short for
local operations and classical communication, provides a setting in which to address basic questions
about the nature of entanglement and non-locality, generally viewed as principal characteristics
of quantum information.

One particular question along these lines that has been considered by several researchers is that
of LOCC distinguishability of sets of states. In the two-party case, the two parties (Alice and Bob)
share one of a known orthogonal collection of pure states, and their goal is to determine which
of the states it is [BDF+99, BDM+99, CL03, Fan04, GKR+01, GKRS04, HSSH03, Nat05, WH02,
WSHV00]. In some cases it is possible for Alice and Bob to perform this task without error and in
some it is not. For example, the fundamental result of Walgate, et al. [WSHV00] establishes that
any two orthogonal pure states can be distinguished without error. On the other hand, large sets
of maximally entangled states cannot; for instance, if Alice and Bob’s systems each correspond
to n dimensional spaces, then it is impossible for them to perfectly distinguish n + 1 or more
maximally entangled states [GKRS04, Nat05]. Other examples of sets of orthogonal states that
cannot be perfectly distinguished by LOCC protocols include those of Ref. [BDF+99] and any set
of states forming an unextendable product basis [BDM+99]. These examples demonstrate that
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entanglement is not an essential feature of LOCC indistinguishable sets of states given that these
sets contain only product states.

This paper considers a related question, which is whether there exist subspaces of bipartite
tensor product spaces such that no orthonormal basis of the subspace has the property that its
elements can be perfectly distinguished by means of an LOCC protocol. Many examples of LOCC-
indistinguishable sets fail to give an example of such a subspace in that they span subspaces
for which one can easily find a perfectly distinguishable basis. For example, the four Bell states
are not perfectly distinguishable by any LOCC protocol, but the space spanned by these states
obviously does have a perfectly distinguishable basis: the standard basis. Indeed, every subspace
of a tensor product space A⊗B for which dim(A) = dim(B) = 2 has a basis whose elements can
be perfectly distinguished by some LOCC protocol, and therefore fails to have the property we are
considering. In higher dimensions, the existence of subspaces having no LOCC-distinguishable
bases was established by Gregoratti and Werner [GW03] by means of a non-constructive proof.
The present paper provides an explicit proof for all bipartite spaces A⊗B for which A = B = Cn

for n ≥ 3. More specifically, it is proved that the subspace of dimension n2 − 1 that is orthogonal
to the canonical maximally entangled state (or any other fixed maximally entangled state) has no
basis that can be perfectly distinguished by an LOCC protocol.

One motive for investigating this property is to identify quantum channels having sub-optimal
corrected capacity, as considered by Gregoratti and Werner [GW03, GW04] and Hayden and
King [HK05] (among several others). These authors considered the situation in which a sender
transmits information over a quantum channel to a receiver, who has the added capability to mea-
sure the environment and use the result to correct the channel’s output. Many natural examples
of channels can easily be seen to in fact have optimal corrected capacity to transmit classical infor-
mation, meaning that the capacity is log2 n for n the dimension of the input space, and no explicit
examples of channels were previously proved to have less than optimal classical corrected capac-
ity. The existence of subspaces having no LOCC distinguishable bases implies the existence of
such channels, even if the definitions of corrected capacity are extended to allow two-way com-
munication between the receiver and the environment.

2 Preliminaries

This paper uses standard mathematical notation rather than Dirac notation to represent vectors
and linear mappings. All vector spaces discussed are assumed to be finite dimensional complex
vector spaces. The standard basis of a vector space X of the form X = Cn is {e1, . . . , en}, where ei

is the elementary unit vector defined by ei(j) = δij. The space of linear mappings from a space Y to
a space X is denoted L (Y ,X ), and we write L (X ) as shorthand for L (X ,X ) and X ∗ as shorthand
for L (X , C). If X = Cn and Y = Cm, then elements of X are identified with n dimensional column
vectors, elements of X ∗ are identified with n dimensional row vectors, and elements of L (Y ,X )
are identified with n × m matrices in the typical way. For x ∈ X we let x ∈ X and xT, x∗ ∈ X ∗

denote the entry-wise complex conjugate, transpose, and conjugate transpose of x, and similar for
linear mappings; X ∈ L (Y ,X ) and XT, X∗ ∈ L (X ,Y) denote the entry-wise complex conjugate,
transpose, and conjugate transpose of X ∈ L (Y ,X ). The usual inner products on X and L (Y ,X )
are given by 〈x, y〉 = x∗y and 〈X, Y〉 = Tr(X∗Y) for x, y ∈ X and X, Y ∈ L (Y ,X ). The standard
basis of the space L (Y ,X ) consists of the mappings Ei,j = eie

∗
j for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The identity operator acting on a given space X is denoted IX , or just as I when X is implicit
of otherwise understood. It is sometimes helpful to give different names to distinct but otherwise
identical spaces; in particular, we assume that A = Cn and B = Cn are vector spaces referring
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to Alice’s and Bob’s systems, respectively. We define IB,A ∈ L (B,A) to be the linear mapping
that identifies vectors in A with vectors in B by identifying the standard bases of these spaces.
Often this mapping is used implicitly. For instance if a ∈ A and b ∈ B then 〈a, b〉 is shorthand for
〈a, IB,Ab〉, and when X ∈ L (A,B) we write Tr(X) to mean Tr(IB,AX).

It is convenient when discussing bipartite quantum states to define a linear bijection

vec : L (Y ,X ) → X ⊗Y

by the action vec(Ei,j) = ei ⊗ ej on standard basis elements, and extending by linearity to all of
L (Y ,X ). For any choice of linear mappings A, X, and B for which the product AXB makes sense,
the equation

(A ⊗ BT) vec(X) = vec(AXB)

is satisfied. For A = Cn and B = Cn, the unit vector

1√
n

vec(IB,A) =
1√
n

n

∑
i=1

ei ⊗ ei ∈ A⊗ B

represents the canonical maximally entangled pure state in the space A⊗B. Let

P =
1

n
vec(IB,A) vec(IB,A)∗

represent the projection onto the space spanned by this vector and let Q = IA⊗B − P denote the
projection onto the orthogonal complement of this space. Also let P and Q denote the subspaces
of A⊗B onto which P and Q project, respectively.

3 Separable measurements and LOCC state discrimination

A separable measurement on A⊗B with possible outcomes {1, . . . , N} is a positive operator valued
measurement, or POVM for short, described by a collection

{Ai ⊗ Bi : i = 1, . . . , N} ⊂ L (A⊗B) (1)

where each Ai and Bi is positive semidefinite. If we have that each of the operators Ai and Bi

has rank equal to one, we will say that the measurement is a rank one separable measurement. If
u1, . . . , um ∈ A ⊗ B is a collection of unit vectors, then the separable measurement (1) is said to
perfectly distinguish this collection of vectors if there exists a partition

S1 ∪ · · · ∪ Sm = {1, . . . , N}, Sk ∩ Sl = ∅ for k 6= l,

such that

u∗
k

(

∑
i∈Sl

Ai ⊗ Bi

)

uk = δkl

for 1 ≤ k, l ≤ m.
Any measurement that can be realized by means of an LOCC protocol can be described by a

rank one separable measurement, which implies that the following proposition holds.

Proposition 1. If Alice and Bob can perfectly distinguish the states u1, . . . , um by means of an LOCC
protocol, then there exists a rank one separable measurement {aia

∗
i ⊗ bib

∗
i : i = 1, . . . , N} that perfectly

distinguishes u1, . . . , um.
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The converse of this proposition does not hold [BDF+99, Rai97].
It will be helpful below in the proof of the main result to have noted a simple fact concerning

rank one separable measurements. Assume

{

aia
∗
i ⊗ bib

T

i : i = 1, . . . , N
}

describes such a measurement. Then

N

∑
i=1

aia
∗
i ⊗ bib

T

i = IA⊗B,

and thus

vec(IB,A) =

(

N

∑
i=1

aia
∗
i ⊗ bib

T

i

)

vec(IB,A) = vec

(

N

∑
i=1

aia
∗
i bib

∗
i

)

= vec

(

N

∑
i=1

〈ai, bi〉 aib
∗
i

)

.

It therefore holds that
N

∑
i=1

〈ai, bi〉 aib
∗
i = IB,A,

and so taking the trace of both sides yields

N

∑
i=1

|〈ai, bi〉|2 = n.

4 The main theorem

We are now ready to prove the main result, which is stated in the following theorem.

Theorem 2. For n ≥ 3, there is no basis of Q that is perfectly distinguishable by an LOCC protocol.

Proof. The proof is by contradiction. To this end, assume {u1, . . . , um} is an orthonormal basis of
Q whose elements are perfectly distinguished by some LOCC protocol. Then there exists a rank
one separable measurement

{

aia
∗
i ⊗ bib

T

i : i = 1, . . . , N
}

,

together with a partition

S1 ∪ · · · ∪ Sm = {1, . . . , N}, Sk ∩ Sl = ∅ for k 6= l,

such that

u∗
k

(

∑
i∈Sl

aia
∗
i ⊗ bib

T

i

)

uk = δkl

for all 1 ≤ k, l ≤ m. Without loss of generality it may be assumed that ai ⊗ bi and aj ⊗ bj are
linearly independent for every choice of i 6= j.

As

u∗
k

(

aia
∗
i ⊗ bib

T

i

)

uk =
∣

∣

∣

〈

uk, ai ⊗ bi

〉
∣

∣

∣

2
,
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it follows that uk and ai ⊗ bi are orthogonal whenever i 6∈ Sk. Consequently, it holds that

u∗
k

(

aia
∗
i ⊗ bib

T

i

)

ul = 0

for k 6= l, given that Sk and Sl are disjoint. The projection Q acts trivially on each of the vectors
u1, . . . , um, and thus

u∗
k Q
(

aia
∗
i ⊗ bib

T

i

)

Qul = 0

for k 6= l. Letting v = 1√
n

vec(IB,A) we have Qv = 0, and thus

u∗
k Q
(

aia
∗
i ⊗ bib

T

i

)

Qv = v∗Q
(

aia
∗
i ⊗ bib

T

i

)

Quk = 0

for each choice of k as well. It has therefore been shown that the orthonormal basis {u1, . . . , um, v}
of A⊗B diagonalizes each of the operators

Q
(

aia
∗
i ⊗ bib

T

i

)

Q,

for 1 ≤ i ≤ N. As these operators are all simultaneously diagonalized by a common orthonormal
basis, they must commute. To establish a contradiction, completing the proof, it will therefore
suffice to prove that there exists at least one choice of i 6= j such that

[

Q
(

aia
∗
i ⊗ bib

T

i

)

Q , Q
(

aja
∗
j ⊗ bjb

T

j

)

Q
]

6= 0.

Let αi,j = (a∗i ⊗ bT

i )Q(aj ⊗ bj) for all i, j. It will first be proved that there exists a choice of i 6= j
such that αi,j 6= 0. In order to prove this, assume toward contradiction that αi,j = 0 for every pair
i 6= j. As

αi,j = (a∗i ⊗ bT

i )Q(aj ⊗ bj) =
〈

ai, aj

〉 〈

bj, bi

〉

− 1

n
〈ai, bi〉

〈

bj, aj

〉

this implies
〈

ai, aj

〉 〈

bj, bi

〉

=
1

n
〈ai, bi〉

〈

bj, aj

〉

for all choices of i 6= j. Because ∑i |〈ai, bi〉|2 = n > 0, we may choose some value of i for which
〈ai, bi〉 6= 0. We then have

〈ai, bi〉 = a∗i

(

∑
j

〈

aj, bj

〉

ajb
∗
j

)

bi

= ∑
j

〈

aj, bj

〉 〈

ai, aj

〉 〈

bj, bi

〉

= ∑
j 6=i

〈

aj, bj

〉 〈

ai, aj

〉 〈

bj, bi

〉

+ 〈ai, bi〉 ‖ai‖2 ‖bi‖2

=
1

n ∑
j 6=i

〈

aj, bj

〉

〈ai, bi〉
〈

bj, aj

〉

+〈ai, bi〉 ‖ai‖2 ‖bi‖2

=

(

1 − 1

n
|〈ai, bi〉|2 + ‖ai‖2 ‖bi‖2

)

〈ai, bi〉 .

As 〈ai, bi〉 6= 0 this implies
1

n
|〈ai, bi〉|2 = ‖ai‖2 ‖bi‖2 .
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But then by the Cauchy-Schwarz Inequality we have

|〈ai, bi〉|2 ≤ ‖ai‖2 ‖bi‖2 =
1

n
|〈ai, bi〉|2 ,

which implies |〈ai, bi〉|2 = 0. This contradicts the fact that i was chosen so that 〈ai, bi〉 6= 0, and so
it has been proved that αi,j 6= 0 for some choice of i 6= j. Fix such a choice for the remainder of the
proof.

Next, let us prove that the two vectors Q(ai ⊗ bi) and Q(aj ⊗ bj) are linearly independent. To
this end let β and γ be scalars that satisfy

β Q(ai ⊗ bi) + γ Q(aj ⊗ bj) = 0.

This implies

β ai ⊗ bi + γ aj ⊗ bj =
1

n

(

β 〈bi, ai〉 + γ
〈

bj, aj

〉)

vec(IB,A),

or equivalently

β aib
∗
i + γ ajb

∗
j =

1

n

(

β 〈bi, ai〉 + γ
〈

bj, aj

〉)

IB,A.

The left hand side of this equation has rank at most 2. Because we are assuming that n ≥ 3 this
means that the right hand side must be 0, for otherwise it would have rank n ≥ 3. Thus

β aib
∗
i + γ ajb

∗
j = 0,

which is equivalent to
β ai ⊗ bi + γ aj ⊗ bj = 0.

As ai ⊗ bi and aj ⊗ bj are necessarily linearly independent, however, this implies that β = γ = 0.

Consequently Q(ai ⊗ bi) and Q(aj ⊗ bj) are linearly independent.
Finally, we will prove that

[

Q
(

aia
∗
i ⊗ bib

T

i

)

Q , Q
(

aja
∗
j ⊗ bjb

T

j

)

Q
]

6= 0,

which is equivalent to

αi,j Q(ai ⊗ bi)(a∗j ⊗ bT

j )Q 6= αi,j Q(aj ⊗ bj)(a∗i ⊗ bT

i )Q.

Because αi,j 6= 0 and the vectors Q(ai ⊗ bi) and Q(aj ⊗ bj) are nonzero (as they are linearly in-
dependent), neither of these operators is 0. The images of the two operators are therefore the
spaces spanned by the vectors Q(ai ⊗ bi) and Q(aj ⊗ bj), respectively. The linear independence of

Q(ai ⊗ bi) and Q(aj ⊗ bj) therefore implies that the two operators are not equal, which completes
the proof.

The assumption n ≥ 3 in Theorem 2 is necessary. Indeed, every subspace of a tensor product
space A⊗ B where A = C2 and B = C2 has a perfectly distinguishable basis. To see this, let V
be a subspace of A⊗ B and let m = dim(V). There is nothing to prove for m = 0 or m = 1, the
claim for m = 2 follows from Walgate, et al. [WSHV00], and is trivial for m = 4. In the remaining
case m = 3, it must be that V is the orthogonal complement of some unit vector u ∈ A ⊗ B. By
considering the Schmidt decomposition of a given u, it is straightforward to find two product
states a1 ⊗ b1 and a2 ⊗ b2 so that the set {u, a1 ⊗ b1, a2 ⊗ b2} is orthonormal. Letting v be any vector
orthogonal to the span of {u, a1 ⊗ b1, a2 ⊗ b2}, we have that {v, a1 ⊗ b1, a2 ⊗ b2} is an orthonormal
basis of V . Walgate and Hardy [WH02] have shown that any such set is perfectly distinguishable
given that at least two members of the set are product states.
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5 Channels with sub-optimal classical corrected capacity

Gregoratti and Werner [GW03], Hayden and King [HK05], and Winter [Win05] considered the
classical capacity of quantum channels when the receiver has the capability to measure the chan-
nel’s environment and to use the classical result of this measurement when measuring the output
of the channel. We now give explicit examples of channels that have sub-optimal capacity with re-
spect to this notion. In fact, the capacity of the channels remains sub-optimal even when two-way
communication is allowed between the receiver and the environment.

Our concern is only with channels with sub-optimal classical corrected capacity, and not with
quantitative bounds on this capacity. We will therefore use the following qualitative definition
that does not refer to any specific measure of capacity. An admissible (i.e., completely positive
and trace-preserving) mapping Φ : L (X ) → L (A) is said to have optimal two-way classical corrected
capacity if the following holds:

(i) There exists a space B and a unitary embedding U ∈ L (X ,A⊗B) such that

Φ(X) = TrB (UXU∗)

for all X ∈ L (X ), and

(ii) there exists an orthonormal basis {x1, . . . , xn} of X such that the set Ux1, . . . , Uxn ∈ A⊗ B
is perfectly distinguishable by some LOCC protocol.

By the Stinespring Dilation Theorem, the collection of all choices for the unitary embedding U in
item (i) are equivalent up to a unitary operator on B, and consequently a given mapping Φ fails to
have optimal two-way classical corrected capacity if item (ii) fails to hold for even a single choice
of U.

The admissible mappings that fail to satisfy the above definition of optimality are based on

the subspaces considered previously. Let n ≥ 3, let X = Cn2−1, and let A = B = Cn. Choose
u1, . . . , un2−1 ∈ A⊗ B to be an arbitrary orthonormal basis for the subspace Q of A⊗ B. Define
U ∈ L (X ,A⊗B) as

U =
n2−1

∑
i=1

uie
∗
i .

This is a unitary embedding, implying that the mapping Φ ∈ L (X ) → L (A) defined by Φ(X) =
TrB UXU∗ for all X ∈ L (X ) is admissible.

If Φ had optimal two-way classical corrected capacity, there would exist a choice of an or-
thonormal basis {x1, . . . , xn2−1} of X such that Ux1, . . . , Uxn2−1 ∈ A⊗ B is perfectly distinguish-
able by an LOCC protocol. As any such set is necessarily an orthonormal basis of Q, this cannot
be by Theorem 2. We have therefore proved the following corollary.

Corollary 3. The mapping Φ does not have optimal two-way classical corrected capacity.

It is of course simple to adjust the above example to give a channel where the input and output
spaces have the same dimension by viewing that the receiver’s space A is embedded in X . One
may therefore view the example above for n = 3 as giving a three-qubit channel having sub-
optimal two-way classical corrected capacity.

7



6 Conclusion

This paper has proved that for n ≥ 3, the subspace of Cn ⊗ Cn that is orthogonal to any one maxi-
mally entangled vector does not have an orthonormal basis that can be perfectly distinguished by
means of local operations and classical communication. An implication of the existence of such
subspaces to channel capacities was also discussed. Specifically, explicit examples of channels
having sub-optimal classical corrected capacity were constructed based on these subspaces.

There are several interesting, unanswered questions relating to subspaces having no LOCC-
distinguishable bases. For instance, can such subspaces exist for a bipartite system in which one
of the systems is a two-level system? As has been observed above, this would forbid the second
system from also being a two-level system. Another question is, what is the minimum possi-
ble dimension of such subspaces? The dimension must be at least 3, following from Walgate, et
al. [WSHV00], while the smallest dimension achieved in this paper is 8. Finally, what sorts of
quantitative bounds can be proved on the classical corrected capacity of quantum channels?

I thank Somshubhro Bandyopadhyay, Mehdi Mhalla, and Jonathan Walgate for several help-
ful discussions and suggestions. This research was supported by Canada’s NSERC, the Canada
Research Chairs program, and the Canadian Institute for Advanced Research (CIAR).
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