Bipartite subspaces having no bases distinguishable by local operations and classical communication*

John Watrous
Institute for Quantum Computing and School of Computer Science
University of Waterloo, Waterloo, Ontario, Canada

April 25, 2008

Abstract

This paper proves that for $n \geq 3$, the subspace of $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ that is orthogonal to any one maximally entangled vector does not have an orthonormal basis that can be perfectly distinguished by means of local operations and classical communication. As a corollary of this fact, descriptions of quantum channel are given that have sub-optimal classical capacity even when the receiver may communicate classically with a third party that represents the channel's environment. The existence of subspaces and channels with these properties was previously established by Gregoratti and Werner [GW03] by a non-constructive proof for high-dimensional spaces-this paper therefore provides explicit proofs of these facts.

1 Introduction

One of the main goals of the theory of quantum information in recent years has been to understand the powers and limitations of LOCC protocols. These are protocols wherein two or more physically separated parties possess the ability to perform arbitrary operations on local quantum systems and to communicate with one another, but only classically. The paradigm of LOCC, short for local operations and classical communication, provides a setting in which to address basic questions about the nature of entanglement and non-locality, generally viewed as principal characteristics of quantum information.

One particular question along these lines that has been considered by several researchers is that of LOCC distinguishability of sets of states. In the two-party case, the two parties (Alice and Bob) share one of a known orthogonal collection of pure states, and their goal is to determine which of the states it is $\left[\mathrm{BDF}^{+} 99, \mathrm{BDM}^{+} 99\right.$, CL03, Fan04, GKR ${ }^{+}$01, GKRS04, HSSH03, Nat05, WH02, WSHV00). In some cases it is possible for Alice and Bob to perform this task without error and in some it is not. For example, the fundamental result of Walgate, et al. WSHV00 establishes that any two orthogonal pure states can be distinguished without error. On the other hand, large sets of maximally entangled states cannot; for instance, if Alice and Bob's systems each correspond to n dimensional spaces, then it is impossible for them to perfectly distinguish $n+1$ or more maximally entangled states [GKRS04, Nat05]. Other examples of sets of orthogonal states that cannot be perfectly distinguished by LOCC protocols include those of Ref. [$\left.\mathrm{BDF}^{+} 99\right]$ and any set of states forming an unextendable product basis $\left[\mathrm{BDM}^{+} 99\right]$. These examples demonstrate that

[^0]entanglement is not an essential feature of LOCC indistinguishable sets of states given that these sets contain only product states.

This paper considers a related question, which is whether there exist subspaces of bipartite tensor product spaces such that no orthonormal basis of the subspace has the property that its elements can be perfectly distinguished by means of an LOCC protocol. Many examples of LOCCindistinguishable sets fail to give an example of such a subspace in that they span subspaces for which one can easily find a perfectly distinguishable basis. For example, the four Bell states are not perfectly distinguishable by any LOCC protocol, but the space spanned by these states obviously does have a perfectly distinguishable basis: the standard basis. Indeed, every subspace of a tensor product space $\mathcal{A} \otimes \mathcal{B}$ for which $\operatorname{dim}(\mathcal{A})=\operatorname{dim}(\mathcal{B})=2$ has a basis whose elements can be perfectly distinguished by some LOCC protocol, and therefore fails to have the property we are considering. In higher dimensions, the existence of subspaces having no LOCC-distinguishable bases was established by Gregoratti and Werner [GW03] by means of a non-constructive proof. The present paper provides an explicit proof for all bipartite spaces $\mathcal{A} \otimes \mathcal{B}$ for which $\mathcal{A}=\mathcal{B}=\mathbb{C}^{n}$ for $n \geq 3$. More specifically, it is proved that the subspace of dimension $n^{2}-1$ that is orthogonal to the canonical maximally entangled state (or any other fixed maximally entangled state) has no basis that can be perfectly distinguished by an LOCC protocol.

One motive for investigating this property is to identify quantum channels having sub-optimal corrected capacity, as considered by Gregoratti and Werner [GW03, GW04] and Hayden and King [HK05] (among several others). These authors considered the situation in which a sender transmits information over a quantum channel to a receiver, who has the added capability to measure the environment and use the result to correct the channel's output. Many natural examples of channels can easily be seen to in fact have optimal corrected capacity to transmit classical information, meaning that the capacity is $\log _{2} n$ for n the dimension of the input space, and no explicit examples of channels were previously proved to have less than optimal classical corrected capacity. The existence of subspaces having no LOCC distinguishable bases implies the existence of such channels, even if the definitions of corrected capacity are extended to allow two-way communication between the receiver and the environment.

2 Preliminaries

This paper uses standard mathematical notation rather than Dirac notation to represent vectors and linear mappings. All vector spaces discussed are assumed to be finite dimensional complex vector spaces. The standard basis of a vector space \mathcal{X} of the form $\mathcal{X}=\mathbb{C}^{n}$ is $\left\{e_{1}, \ldots, e_{n}\right\}$, where e_{i} is the elementary unit vector defined by $e_{i}(j)=\delta_{i j}$. The space of linear mappings from a space \mathcal{Y} to a space \mathcal{X} is denoted $\mathrm{L}(\mathcal{Y}, \mathcal{X})$, and we write $\mathrm{L}(\mathcal{X})$ as shorthand for $\mathrm{L}(\mathcal{X}, \mathcal{X})$ and \mathcal{X}^{*} as shorthand for $\mathrm{L}(\mathcal{X}, \mathbb{C})$. If $\mathcal{X}=\mathbb{C}^{n}$ and $\mathcal{Y}=\mathbb{C}^{m}$, then elements of \mathcal{X} are identified with n dimensional column vectors, elements of \mathcal{X}^{*} are identified with n dimensional row vectors, and elements of $\mathrm{L}(\mathcal{Y}, \mathcal{X})$ are identified with $n \times m$ matrices in the typical way. For $x \in \mathcal{X}$ we let $\bar{x} \in \mathcal{X}$ and $x^{\top}, x^{*} \in \mathcal{X}^{*}$ denote the entry-wise complex conjugate, transpose, and conjugate transpose of x, and similar for linear mappings; $\bar{X} \in \mathrm{~L}(\mathcal{Y}, \mathcal{X})$ and $X^{\top}, X^{*} \in \mathrm{~L}(\mathcal{X}, \mathcal{Y})$ denote the entry-wise complex conjugate, transpose, and conjugate transpose of $X \in \mathrm{~L}(\mathcal{Y}, \mathcal{X})$. The usual inner products on \mathcal{X} and $\mathrm{L}(\mathcal{Y}, \mathcal{X})$ are given by $\langle x, y\rangle=x^{*} y$ and $\langle X, Y\rangle=\operatorname{Tr}\left(X^{*} Y\right)$ for $x, y \in \mathcal{X}$ and $X, Y \in \mathrm{~L}(\mathcal{Y}, \mathcal{X})$. The standard basis of the space $\mathrm{L}(\mathcal{Y}, \mathcal{X})$ consists of the mappings $E_{i, j}=e_{i} e_{j}^{*}$ for $1 \leq i \leq n$ and $1 \leq j \leq m$.

The identity operator acting on a given space \mathcal{X} is denoted $I_{\mathcal{X}}$, or just as I when \mathcal{X} is implicit of otherwise understood. It is sometimes helpful to give different names to distinct but otherwise identical spaces; in particular, we assume that $\mathcal{A}=\mathbb{C}^{n}$ and $\mathcal{B}=\mathbb{C}^{n}$ are vector spaces referring
to Alice's and Bob's systems, respectively. We define $I_{\mathcal{B}, \mathcal{A}} \in \mathrm{L}(\mathcal{B}, \mathcal{A})$ to be the linear mapping that identifies vectors in \mathcal{A} with vectors in \mathcal{B} by identifying the standard bases of these spaces. Often this mapping is used implicitly. For instance if $a \in \mathcal{A}$ and $b \in \mathcal{B}$ then $\langle a, b\rangle$ is shorthand for $\left\langle a, I_{\mathcal{B}, \mathcal{A}} b\right\rangle$, and when $X \in \mathrm{~L}(\mathcal{A}, \mathcal{B})$ we write $\operatorname{Tr}(X)$ to mean $\operatorname{Tr}\left(I_{\mathcal{B}, \mathcal{A}} X\right)$.

It is convenient when discussing bipartite quantum states to define a linear bijection

$$
\text { vec }: \mathrm{L}(\mathcal{Y}, \mathcal{X}) \rightarrow \mathcal{X} \otimes \mathcal{Y}
$$

by the action $\operatorname{vec}\left(E_{i, j}\right)=e_{i} \otimes e_{j}$ on standard basis elements, and extending by linearity to all of $\mathrm{L}(\mathcal{Y}, \mathcal{X})$. For any choice of linear mappings A, X, and B for which the product $A X B$ makes sense, the equation

$$
\left(A \otimes B^{\top}\right) \operatorname{vec}(X)=\operatorname{vec}(A X B)
$$

is satisfied. For $\mathcal{A}=\mathbb{C}^{n}$ and $\mathcal{B}=\mathbb{C}^{n}$, the unit vector

$$
\frac{1}{\sqrt{n}} \operatorname{vec}\left(I_{\mathcal{B}, \mathcal{A}}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} \otimes e_{i} \in \mathcal{A} \otimes \mathcal{B}
$$

represents the canonical maximally entangled pure state in the space $\mathcal{A} \otimes \mathcal{B}$. Let

$$
P=\frac{1}{n} \operatorname{vec}\left(I_{\mathcal{B}, \mathcal{A}}\right) \operatorname{vec}\left(I_{\mathcal{B}, \mathcal{A}}\right)^{*}
$$

represent the projection onto the space spanned by this vector and let $Q=I_{\mathcal{A} \otimes \mathcal{B}}-P$ denote the projection onto the orthogonal complement of this space. Also let \mathcal{P} and \mathcal{Q} denote the subspaces of $\mathcal{A} \otimes \mathcal{B}$ onto which P and Q project, respectively.

3 Separable measurements and LOCC state discrimination

A separable measurement on $\mathcal{A} \otimes \mathcal{B}$ with possible outcomes $\{1, \ldots, N\}$ is a positive operator valued measurement, or POVM for short, described by a collection

$$
\begin{equation*}
\left\{A_{i} \otimes B_{i}: i=1, \ldots, N\right\} \subset \mathrm{L}(\mathcal{A} \otimes \mathcal{B}) \tag{1}
\end{equation*}
$$

where each A_{i} and B_{i} is positive semidefinite. If we have that each of the operators A_{i} and B_{i} has rank equal to one, we will say that the measurement is a rank one separable measurement. If $u_{1}, \ldots, u_{m} \in \mathcal{A} \otimes \mathcal{B}$ is a collection of unit vectors, then the separable measurement (1) is said to perfectly distinguish this collection of vectors if there exists a partition

$$
S_{1} \cup \cdots \cup S_{m}=\{1, \ldots, N\}, \quad S_{k} \cap S_{l}=\varnothing \text { for } k \neq l,
$$

such that

$$
u_{k}^{*}\left(\sum_{i \in S_{l}} A_{i} \otimes B_{i}\right) u_{k}=\delta_{k l}
$$

for $1 \leq k, l \leq m$.
Any measurement that can be realized by means of an LOCC protocol can be described by a rank one separable measurement, which implies that the following proposition holds.

Proposition 1. If Alice and Bob can perfectly distinguish the states u_{1}, \ldots, u_{m} by means of an LOCC protocol, then there exists a rank one separable measurement $\left\{a_{i} a_{i}^{*} \otimes b_{i} b_{i}^{*}: i=1, \ldots, N\right\}$ that perfectly distinguishes u_{1}, \ldots, u_{m}.

The converse of this proposition does not hold [BDF ${ }^{+} 99$, Rai97.
It will be helpful below in the proof of the main result to have noted a simple fact concerning rank one separable measurements. Assume

$$
\left\{a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}: i=1, \ldots, N\right\}
$$

describes such a measurement. Then

$$
\sum_{i=1}^{N} a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}=I_{\mathcal{A} \otimes \mathcal{B}}
$$

and thus

$$
\operatorname{vec}\left(I_{\mathcal{B}, \mathcal{A}}\right)=\left(\sum_{i=1}^{N} a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) \operatorname{vec}\left(I_{\mathcal{B}, \mathcal{A}}\right)=\operatorname{vec}\left(\sum_{i=1}^{N} a_{i} a_{i}^{*} b_{i} b_{i}^{*}\right)=\operatorname{vec}\left(\sum_{i=1}^{N}\left\langle a_{i}, b_{i}\right\rangle a_{i} b_{i}^{*}\right) .
$$

It therefore holds that

$$
\sum_{i=1}^{N}\left\langle a_{i}, b_{i}\right\rangle a_{i} b_{i}^{*}=I_{\mathcal{B}, \mathcal{A}}
$$

and so taking the trace of both sides yields

$$
\sum_{i=1}^{N}\left|\left\langle a_{i}, b_{i}\right\rangle\right|^{2}=n .
$$

4 The main theorem

We are now ready to prove the main result, which is stated in the following theorem.
Theorem 2. For $n \geq 3$, there is no basis of \mathcal{Q} that is perfectly distinguishable by an LOCC protocol.
Proof. The proof is by contradiction. To this end, assume $\left\{u_{1}, \ldots, u_{m}\right\}$ is an orthonormal basis of \mathcal{Q} whose elements are perfectly distinguished by some LOCC protocol. Then there exists a rank one separable measurement

$$
\left\{a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}: i=1, \ldots, N\right\}
$$

together with a partition

$$
S_{1} \cup \cdots \cup S_{m}=\{1, \ldots, N\}, \quad S_{k} \cap S_{l}=\varnothing \text { for } k \neq l,
$$

such that

$$
u_{k}^{*}\left(\sum_{i \in S_{l}} a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) u_{k}=\delta_{k l}
$$

for all $1 \leq k, l \leq m$. Without loss of generality it may be assumed that $a_{i} \otimes \overline{b_{i}}$ and $a_{j} \otimes \overline{b_{j}}$ are linearly independent for every choice of $i \neq j$.

As

$$
u_{k}^{*}\left(a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) u_{k}=\left|\left\langle u_{k}, a_{i} \otimes \overline{b_{i}}\right\rangle\right|^{2}
$$

it follows that u_{k} and $a_{i} \otimes \overline{b_{i}}$ are orthogonal whenever $i \notin S_{k}$. Consequently, it holds that

$$
u_{k}^{*}\left(a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) u_{l}=0
$$

for $k \neq l$, given that S_{k} and S_{l} are disjoint. The projection Q acts trivially on each of the vectors u_{1}, \ldots, u_{m}, and thus

$$
u_{k}^{*} Q\left(a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) Q u_{l}=0
$$

for $k \neq l$. Letting $v=\frac{1}{\sqrt{n}} \operatorname{vec}\left(I_{\mathcal{B}, \mathcal{A}}\right)$ we have $Q v=0$, and thus

$$
u_{k}^{*} Q\left(a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) Q v=v^{*} Q\left(a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) Q u_{k}=0
$$

for each choice of k as well. It has therefore been shown that the orthonormal basis $\left\{u_{1}, \ldots, u_{m}, v\right\}$ of $\mathcal{A} \otimes \mathcal{B}$ diagonalizes each of the operators

$$
Q\left(a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) Q,
$$

for $1 \leq i \leq N$. As these operators are all simultaneously diagonalized by a common orthonormal basis, they must commute. To establish a contradiction, completing the proof, it will therefore suffice to prove that there exists at least one choice of $i \neq j$ such that

$$
\left[Q\left(a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) Q, Q\left(a_{j} a_{j}^{*} \otimes \overline{b_{j}} b_{j}^{\top}\right) Q\right] \neq 0 .
$$

Let $\alpha_{i, j}=\left(a_{i}^{*} \otimes b_{i}^{\top}\right) Q\left(a_{j} \otimes \overline{b_{j}}\right)$ for all i, j. It will first be proved that there exists a choice of $i \neq j$ such that $\alpha_{i, j} \neq 0$. In order to prove this, assume toward contradiction that $\alpha_{i, j}=0$ for every pair $i \neq j$. As

$$
\alpha_{i, j}=\left(a_{i}^{*} \otimes b_{i}^{\top}\right) Q\left(a_{j} \otimes \overline{b_{j}}\right)=\left\langle a_{i}, a_{j}\right\rangle\left\langle b_{j}, b_{i}\right\rangle-\frac{1}{n}\left\langle a_{i}, b_{i}\right\rangle\left\langle b_{j}, a_{j}\right\rangle
$$

this implies

$$
\left\langle a_{i}, a_{j}\right\rangle\left\langle b_{j}, b_{i}\right\rangle=\frac{1}{n}\left\langle a_{i}, b_{i}\right\rangle\left\langle b_{j}, a_{j}\right\rangle
$$

for all choices of $i \neq j$. Because $\sum_{i}\left|\left\langle a_{i}, b_{i}\right\rangle\right|^{2}=n>0$, we may choose some value of i for which $\left\langle a_{i}, b_{i}\right\rangle \neq 0$. We then have

$$
\begin{aligned}
\left\langle a_{i}, b_{i}\right\rangle & =a_{i}^{*}\left(\sum_{j}\left\langle a_{j}, b_{j}\right\rangle a_{j} b_{j}^{*}\right) b_{i} \\
& =\sum_{j}\left\langle a_{j}, b_{j}\right\rangle\left\langle a_{i}, a_{j}\right\rangle\left\langle b_{j}, b_{i}\right\rangle \\
& =\sum_{j \neq i}\left\langle a_{j}, b_{j}\right\rangle\left\langle a_{i}, a_{j}\right\rangle\left\langle b_{j}, b_{i}\right\rangle+\left\langle a_{i}, b_{i}\right\rangle\left\|a_{i}\right\|^{2}\left\|b_{i}\right\|^{2} \\
& =\frac{1}{n} \sum_{j \neq i}\left\langle a_{j}, b_{j}\right\rangle\left\langle a_{i}, b_{i}\right\rangle\left\langle b_{j}, a_{j}\right\rangle+\left\langle a_{i}, b_{i}\right\rangle\left\|a_{i}\right\|^{2}\left\|b_{i}\right\|^{2} \\
& =\left(1-\frac{1}{n}\left|\left\langle a_{i}, b_{i}\right\rangle\right|^{2}+\left\|a_{i}\right\|^{2}\left\|b_{i}\right\|^{2}\right)\left\langle a_{i}, b_{i}\right\rangle .
\end{aligned}
$$

As $\left\langle a_{i}, b_{i}\right\rangle \neq 0$ this implies

$$
\frac{1}{n}\left|\left\langle a_{i}, b_{i}\right\rangle\right|^{2}=\left\|a_{i}\right\|^{2}\left\|b_{i}\right\|^{2} .
$$

But then by the Cauchy-Schwarz Inequality we have

$$
\left|\left\langle a_{i}, b_{i}\right\rangle\right|^{2} \leq\left\|a_{i}\right\|^{2}\left\|b_{i}\right\|^{2}=\frac{1}{n}\left|\left\langle a_{i}, b_{i}\right\rangle\right|^{2},
$$

which implies $\left|\left\langle a_{i}, b_{i}\right\rangle\right|^{2}=0$. This contradicts the fact that i was chosen so that $\left\langle a_{i}, b_{i}\right\rangle \neq 0$, and so it has been proved that $\alpha_{i, j} \neq 0$ for some choice of $i \neq j$. Fix such a choice for the remainder of the proof.

Next, let us prove that the two vectors $Q\left(a_{i} \otimes \overline{b_{i}}\right)$ and $Q\left(a_{j} \otimes \overline{b_{j}}\right)$ are linearly independent. To this end let β and γ be scalars that satisfy

$$
\beta Q\left(a_{i} \otimes \overline{b_{i}}\right)+\gamma Q\left(a_{j} \otimes \overline{b_{j}}\right)=0
$$

This implies

$$
\beta a_{i} \otimes \overline{b_{i}}+\gamma a_{j} \otimes \overline{b_{j}}=\frac{1}{n}\left(\beta\left\langle b_{i}, a_{i}\right\rangle+\gamma\left\langle b_{j}, a_{j}\right\rangle\right) \operatorname{vec}\left(I_{\mathcal{B}, \mathcal{A}}\right),
$$

or equivalently

$$
\beta a_{i} b_{i}^{*}+\gamma a_{j} b_{j}^{*}=\frac{1}{n}\left(\beta\left\langle b_{i}, a_{i}\right\rangle+\gamma\left\langle b_{j}, a_{j}\right\rangle\right) I_{\mathcal{B}, \mathcal{A}} .
$$

The left hand side of this equation has rank at most 2. Because we are assuming that $n \geq 3$ this means that the right hand side must be 0 , for otherwise it would have rank $n \geq 3$. Thus

$$
\beta a_{i} b_{i}^{*}+\gamma a_{j} b_{j}^{*}=0,
$$

which is equivalent to

$$
\beta a_{i} \otimes \overline{b_{i}}+\gamma a_{j} \otimes \overline{b_{j}}=0 .
$$

As $a_{i} \otimes \overline{b_{i}}$ and $a_{j} \otimes \overline{b_{j}}$ are necessarily linearly independent, however, this implies that $\beta=\gamma=0$. Consequently $Q\left(a_{i} \otimes \overline{b_{i}}\right)$ and $Q\left(a_{j} \otimes \overline{b_{j}}\right)$ are linearly independent.

Finally, we will prove that

$$
\left[Q\left(a_{i} a_{i}^{*} \otimes \overline{b_{i}} b_{i}^{\top}\right) Q, Q\left(a_{j} a_{j}^{*} \otimes \overline{b_{j}} b_{j}^{\top}\right) Q\right] \neq 0
$$

which is equivalent to

$$
\alpha_{i, j} Q\left(a_{i} \otimes \overline{b_{i}}\right)\left(a_{j}^{*} \otimes b_{j}^{\top}\right) Q \neq \overline{\alpha_{i, j}} Q\left(a_{j} \otimes \overline{b_{j}}\right)\left(a_{i}^{*} \otimes b_{i}^{\top}\right) Q .
$$

Because $\alpha_{i, j} \neq 0$ and the vectors $Q\left(a_{i} \otimes \overline{b_{i}}\right)$ and $Q\left(a_{j} \otimes \overline{b_{j}}\right)$ are nonzero (as they are linearly independent), neither of these operators is 0 . The images of the two operators are therefore the spaces spanned by the vectors $Q\left(a_{i} \otimes \overline{b_{i}}\right)$ and $Q\left(a_{j} \otimes \overline{b_{j}}\right)$, respectively. The linear independence of $Q\left(a_{i} \otimes \overline{b_{i}}\right)$ and $Q\left(a_{j} \otimes \overline{b_{j}}\right)$ therefore implies that the two operators are not equal, which completes the proof.

The assumption $n \geq 3$ in Theorem 2 is necessary. Indeed, every subspace of a tensor product space $\mathcal{A} \otimes \mathcal{B}$ where $\mathcal{A}=\mathbb{C}^{2}$ and $\mathcal{B}=\mathbb{C}^{2}$ has a perfectly distinguishable basis. To see this, let \mathcal{V} be a subspace of $\mathcal{A} \otimes \mathcal{B}$ and let $m=\operatorname{dim}(\mathcal{V})$. There is nothing to prove for $m=0$ or $m=1$, the claim for $m=2$ follows from Walgate, et al. WSHV00, and is trivial for $m=4$. In the remaining case $m=3$, it must be that \mathcal{V} is the orthogonal complement of some unit vector $u \in \mathcal{A} \otimes \mathcal{B}$. By considering the Schmidt decomposition of a given u, it is straightforward to find two product states $a_{1} \otimes b_{1}$ and $a_{2} \otimes b_{2}$ so that the set $\left\{u, a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right\}$ is orthonormal. Letting v be any vector orthogonal to the span of $\left\{u, a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right\}$, we have that $\left\{v, a_{1} \otimes b_{1}, a_{2} \otimes b_{2}\right\}$ is an orthonormal basis of \mathcal{V}. Walgate and Hardy [WH02] have shown that any such set is perfectly distinguishable given that at least two members of the set are product states.

5 Channels with sub-optimal classical corrected capacity

Gregoratti and Werner [GW03], Hayden and King [HK05], and Winter [Win05] considered the classical capacity of quantum channels when the receiver has the capability to measure the channel's environment and to use the classical result of this measurement when measuring the output of the channel. We now give explicit examples of channels that have sub-optimal capacity with respect to this notion. In fact, the capacity of the channels remains sub-optimal even when two-way communication is allowed between the receiver and the environment.

Our concern is only with channels with sub-optimal classical corrected capacity, and not with quantitative bounds on this capacity. We will therefore use the following qualitative definition that does not refer to any specific measure of capacity. An admissible (i.e., completely positive and trace-preserving) mapping $\Phi: \mathrm{L}(\mathcal{X}) \rightarrow \mathrm{L}(\mathcal{A})$ is said to have optimal two-way classical corrected capacity if the following holds:
(i) There exists a space \mathcal{B} and a unitary embedding $U \in \mathrm{~L}(\mathcal{X}, \mathcal{A} \otimes \mathcal{B})$ such that

$$
\Phi(X)=\operatorname{Tr}_{\mathcal{B}}\left(U X U^{*}\right)
$$

for all $X \in \mathrm{~L}(\mathcal{X})$, and
(ii) there exists an orthonormal basis $\left\{x_{1}, \ldots, x_{n}\right\}$ of \mathcal{X} such that the set $U x_{1}, \ldots, U x_{n} \in \mathcal{A} \otimes \mathcal{B}$ is perfectly distinguishable by some LOCC protocol.

By the Stinespring Dilation Theorem, the collection of all choices for the unitary embedding U in item (i) are equivalent up to a unitary operator on \mathcal{B}, and consequently a given mapping Φ fails to have optimal two-way classical corrected capacity if item (ii) fails to hold for even a single choice of U.

The admissible mappings that fail to satisfy the above definition of optimality are based on the subspaces considered previously. Let $n \geq 3$, let $\mathcal{X}=\mathbb{C}^{n^{2}-1}$, and let $\mathcal{A}=\mathcal{B}=\mathbb{C}^{n}$. Choose $u_{1}, \ldots, u_{n^{2}-1} \in \mathcal{A} \otimes \mathcal{B}$ to be an arbitrary orthonormal basis for the subspace \mathcal{Q} of $\mathcal{A} \otimes \mathcal{B}$. Define $U \in \mathrm{~L}(\mathcal{X}, \mathcal{A} \otimes \mathcal{B})$ as

$$
U=\sum_{i=1}^{n^{2}-1} u_{i} e_{i}^{*} .
$$

This is a unitary embedding, implying that the mapping $\Phi \in \mathrm{L}(\mathcal{X}) \rightarrow \mathrm{L}(\mathcal{A})$ defined by $\Phi(X)=$ $\operatorname{Tr}_{\mathcal{B}} U X U^{*}$ for all $X \in \mathrm{~L}(\mathcal{X})$ is admissible.

If Φ had optimal two-way classical corrected capacity, there would exist a choice of an orthonormal basis $\left\{x_{1}, \ldots, x_{n^{2}-1}\right\}$ of \mathcal{X} such that $U x_{1}, \ldots, U x_{n^{2}-1} \in \mathcal{A} \otimes \mathcal{B}$ is perfectly distinguishable by an LOCC protocol. As any such set is necessarily an orthonormal basis of \mathcal{Q}, this cannot be by Theorem 2 We have therefore proved the following corollary.

Corollary 3. The mapping Φ does not have optimal two-way classical corrected capacity.

It is of course simple to adjust the above example to give a channel where the input and output spaces have the same dimension by viewing that the receiver's space \mathcal{A} is embedded in \mathcal{X}. One may therefore view the example above for $n=3$ as giving a three-qubit channel having suboptimal two-way classical corrected capacity.

6 Conclusion

This paper has proved that for $n \geq 3$, the subspace of $\mathbb{C}^{n} \otimes \mathbb{C}^{n}$ that is orthogonal to any one maximally entangled vector does not have an orthonormal basis that can be perfectly distinguished by means of local operations and classical communication. An implication of the existence of such subspaces to channel capacities was also discussed. Specifically, explicit examples of channels having sub-optimal classical corrected capacity were constructed based on these subspaces.

There are several interesting, unanswered questions relating to subspaces having no LOCCdistinguishable bases. For instance, can such subspaces exist for a bipartite system in which one of the systems is a two-level system? As has been observed above, this would forbid the second system from also being a two-level system. Another question is, what is the minimum possible dimension of such subspaces? The dimension must be at least 3 , following from Walgate, et al. WSHV00], while the smallest dimension achieved in this paper is 8 . Finally, what sorts of quantitative bounds can be proved on the classical corrected capacity of quantum channels?

I thank Somshubhro Bandyopadhyay, Mehdi Mhalla, and Jonathan Walgate for several helpful discussions and suggestions. This research was supported by Canada's NSERC, the Canada Research Chairs program, and the Canadian Institute for Advanced Research (CIAR).

References

[$\left.\mathrm{BDF}^{+} 99\right]$ C. Bennett, D. DiVincenzo, C. Fuchs, T. Mor, E. Rains, P. Shor, J. Smolin, and W. Wootters. Quantum nonlocality without entanglement. Physical Review A, 59:1070-1091, 1999.
[BDM^{+}99] C. Bennett, D. DiVincenzo, T. Mor, P. Shor, J. Smolin, and B. Terhal. Unextendible product bases and bound entanglement. Physical Review Letters, 82(26):5385-5388, 1999.
[CL03] P.-X. Chen and C.-Z. Li. Orthogonality and distinguishability: criterion for local distinguishability of arbitrary orthogonal states. Physical Review A, 68:062107, 2003.
[Fan04] H. Fan. Distinguishability and indistinguishability by local operations and classical communication. Physical Review Letters, 92(17):177905, 2004.
$\left[G K R{ }^{+} 01\right]$ S. Ghosh, G. Kar, A. Roy, A. Sen(De), and U. Sen. Distinguishability of Bell states. Physical Review Letters, 87(27):277902, 2001.
[GKRS04] S. Ghosh, G. Kar, A. Roy, and D. Sarkar. Distinguishability of maximally entangled states. Physical Review A, 70(2):022304, 2004.
[GW03] M. Gregoratti and R. Werner. Quantum lost and found. Journal of Modern Optics, 50(67):915-933, 2003.
[GW04] M. Gregoratti and R. F. Werner. On quantum error-correction by classical feedback in discrete time. Journal of Mathematical Physics, 45(7):2600-2612, 2004.
[HK05] P. Hayden and C. King. Correcting quantum channels by measuring the environment. Quantum Information and Computation, 5(2):156-160, 2005.
[HSSH03] M. Horodecki, A. Sen(De), U. Sen, and K. Horodecki. Local indistinguishability: more nonlocality with less entanglement. Physical Review Letters, 90(4):047902, 2003.
[Nat05] M. Nathanson. Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases. Journal of Mathematical Physics, 46:062103, 2005.
[Rai97] E. Rains. Entanglement purification via separable superoperators. Available as arXiv.org e-Print quant-ph/9707002, 1997.
[WH02] J. Walgate and L. Hardy. Nonlocality, asymmetry, and distinguishing bipartite states. Physical Review Letters, 89(14):147901, 2002.
[Win05] A. Winter. On environment-assisted capacities of quantum channels. Available as arXiv.org e-print quant-ph/0507045, 2005.
[WSHV00] J. Walgate, A. J. Short, L. Hardy, and V. Vedral. Local distinguishability of multipartite orthogonal quantum states. Physical Review Letters, 85(23):4972-4975, 2000.

[^0]: *This is an updated version of the paper published as Physical Review Letters 95(8): 080505, 2005.

