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Abstract. Quantum channel discrimination is a fundamental task in
quantum information theory. It is well known that entanglement with an
ancillary system can help in this task, and furthermore that an ancilla
with the same dimension as the input of the channels is always suffi-
cient for optimal discrimination of two channels. A natural question to
ask is whether the same holds true for the output dimension. That is,
in cases when the output dimension of the channels is (possibly much)
smaller than the input dimension, is an ancilla with dimension equal to
the output dimension always sufficient for optimal discrimination? We
show that the answer to this question is “no” by construction of a family
of counterexamples. This family contains instances with arbitrary finite
gap between the input and output dimensions, and still has the property
that in every case, for optimal discrimination, it is necessary to use an
ancilla with dimension equal to that of the input.

The proof relies on a characterization of all operators on the trace
norm unit sphere that maximize entanglement negativity. In the case
of density operators we generalize this characterization to a broad class
of entanglement measures, which we call weak entanglement measures.
This characterization allows us to conclude that a quantum channel is
reversible if and only if it preserves entanglement as measured by any
weak entanglement measure, with the structure of maximally entangled
states being equivalent to the structure of reversible maps via the Choi
isomorphism. We also include alternate proofs of other known charac-
terizations of channel reversibility.

1. Introduction
The task of quantum channel discrimination is to determine, given a single
use, which of two known channels is acting on a system. In the abstract set-
ting, the person performing the task can choose any state to feed through
the channels, then perform any measurement on the output to guess which
channel acted on the state. In general, it can be useful to probe the channels
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using a state which is entangled to some ancillary system, called an an-
cilla, then perform a joint measurement on the output and ancilla systems
together.

The optimal success probability of discriminating the channels, given
as an optimization over all input states and measurements, is given as
a simple expression involving the completely bounded trace norm (also
called the diamond norm in quantum information theory). Due to proper-
ties of this norm it is possible to conclude that for optimal discrimination of
two channels it is always sufficient to use an ancilla system having the same
size as the input of the channels. It is also known, in cases when the input
and output dimensions are the same, that using an ancilla having the same
size as the input is sometimes necessary for optimal discrimination. One
such example, which we will review, is given by the Werner-Holevo chan-
nels, introduced in [1] (and described in [2, Example 3.39], for instance).

By construction of a family of examples we show that, in cases when
the output dimension is smaller than the input, an ancilla of size equal to
the output is not sufficient in general for optimal channel discrimination.
This family is parameterized by two natural numbers n ≥ 2 and k ≥ 1,
with the input dimension being nk and the output being nk, and hence the
output can be made arbitrarily small compared to the input. Despite this
arbitrary gap, we show that for optimal discrimination of these channels
it remains necessary to use an ancilla as large as the input. This family is
based on the Werner-Holevo channels (and is equivalent to these channels
in the k = 1 case), and therefore can be viewed as extending them as a
demonstration of the general necessity of using an ancilla that is as large as
the input.

Due to the relationship between channel discrimination and the com-
pletely bounded trace norm, this family can also be viewed as a concrete
and direct proof of the fact that for an arbitrary linear map taking matri-
ces to matrices, the completely bounded trace norm does not generically
achieve its value with an ancilla equal to the output dimension of the map.
An equivalent dual statement in terms of the completely bounded norm
was proved by Haagerup in [3] while studying decompositions of com-
pletely bounded maps.

Our proof is based on a characterization of operators on the trace
norm unit sphere that maximize entanglement negativity [4].1 When re-
stricting attention to density operators, we generalize this characterization
to a class of measures that we call weak entanglement measures, which satisfy
a subset of properties that many entanglement measures have. We con-
clude by showing that, when quantified by a weak entanglement measure,
a channel is reversible if and only if it preserves entanglement, and if and
only if its Choi matrix is maximally entangled. Part of proving this is the
observation that the structure of maximally entangled states is equivalent

1While the physical concept of “entanglement” only applies to density operators, the entan-
glement negativity as a function can just as well be applied to any bipartite operator.
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to the structure of reversible channels shown in [5]. We also give short
proofs of the known facts that a channel being reversible is equivalent to
it preserving trace norm, preserving fidelity, and that all complementary
channels are necessarily constant on the set of density operators.

2. Background and notation
In this section we set up notation and review some basic concepts in finite
dimensional vector spaces and quantum theory. Readers familiar with these
topics may wish to skip this section and refer back to it if some notation is
unclear.

2.1. Finite dimensional complex vector spaces
In this paper we work in finite dimensional (f.d.) complex Hilbert spaces,
which we will always take to be Cn with the standard inner product 〈u, v〉 =
∑n

i=1 uivi for u, v ∈ Cn (conjugate linear in the first argument). We use the
symbols A,B,X ,Y , and Z to denote f.d. complex Hilbert spaces when it is
useful to have a label, or when it is not necessary to explicitly refer to the di-
mension. The unit sphere of X is denoted S(X ) = {x ∈ X : ‖x‖ = 1}. The
set of linear operators mapping X → Y is denoted L(X ,Y), and we use
the convention L(X ) = L(X ,X ). We denote the standard basis of elemen-
tary vectors for Cn as e1, . . . , en. For any operator A ∈ L(X ,Y), the operator
A∗ ∈ L(Y ,X ) denotes the adjoint map to A, the operator AT ∈ L(Y ,X ) de-
notes the transpose map to A, and the operator A ∈ L(X ,Y) denotes the
entrywise conjugate of A. (Transposition and entrywise complex conjuga-
tion are taken with respect to the standard basis.) For u ∈ X , we also use
the notations u∗, uT ∈ L(X , C) and u ∈ X by identifying u with an element
in L(C,X ) acting as α 7→ αu. The symbol 1 is used to denote the identity
map, with subscript specifying what space it acts on (e.g. 1X ∈ L(X ) is the
identity acting on X ).

The Hilbert-Schmidt inner product on L(X ,Y) is 〈A, B〉 = Tr(A∗B)
for A, B ∈ L(X ,Y), where Tr is the trace. For standard basis elements ei ∈
X and ej ∈ Y , Eij = eie∗j ∈ L(Y ,X ) denotes the matrix units. We use special
notation for various subsets of L(X ):

• Herm(X ) = {A ∈ L(X ) : A∗ = A}, the set of self-adjoint operators.
• Pos(X ) = {P ∈ L(X ) : P ≥ 0} ⊂ Herm(X ), the set of positive semi-

definite operators.
• U(X ,Y) = {A ∈ L(X ) : A∗A = 1X } when dim(X ) ≤ dim(Y), the

set of isometries.

It will sometimes be useful for us to think of vectors in X ⊗ Y as ele-
ments in L(Y ,X ), and vice versa. To do so we use the vectorization mapping
vec : L(Y ,X ) → X ⊗Y defined as vec(Eij) = ei ⊗ ej, and extended by lin-
earity to all of L(Y ,X ). For general u ∈ X and v ∈ Y , vec(uv∗) = u⊗ v.
The function vec is an isometric isometry, i.e. it is a linear bijection and



4 Daniel Puzzuoli and John Watrous

satisfies 〈vec(A), vec(B)〉 = 〈A, B〉 for all A, B ∈ L(Y ,X ). An identity we
make use of is that

vec(ABC) =
(

A⊗ CT
)
vec(B), (1)

which holds for any A, B, C for which the product ABC is well defined.
The set of linear maps taking L(X ) → L(Y) is denoted T(X ,Y), and

T(X ) = T(X ,X ). The set of completely positive maps in T(X ,Y) is de-
noted CP(X ,Y). Throughout this paper we let T ∈ T(X ) denote the trans-
pose map, so that T(X) = XT. It holds that(

T ⊗ 1L(X )

)
(vec(1X )vec(1X )∗) = WXX , (2)

where WXY ∈ U(X ⊗Y ,Y ⊗X ) denotes the swap operator, which satisfies
WXY (x⊗ y) = y⊗ x for all x ∈ X and y ∈ Y . The linear map J : T(X ,Y)→
L(X ⊗Y), defined as

J(Φ) = (1L(X ) ⊗Φ)(vec(1X )vec(1X )∗) (3)

for Φ ∈ T(X ,Y), is a vector space isomorphism. The matrix J(Φ) is called
the Choi matrix of Φ [6].

For A ∈ L(X ,Y) we use three standard matrix norms, the 1-norm
(also called the trace norm), 2-norm (also called the Frobenius norm), and
∞-norm (also called the spectral norm or operator norm) defined as

‖A‖1 = Tr
(√

A∗A
)
,

‖A‖2 =
√
〈A, A〉,

‖A‖∞ = max{‖Ax‖ : x ∈ S(X )}.

(4)

For p ∈ {1, ∞} we denote the induced p-norms on Φ ∈ T(X ,Y)
‖Φ‖p = max

{
‖Φ(X)‖p : X ∈ L(X ), ‖X‖p ≤ 1

}
(5)

and the completely bounded versions as

|||Φ|||p = sup
{∥∥Φ⊗ 1L(Cm)

∥∥
p : m ∈N

}
. (6)

Iit holds that |||Φ|||1 =
∥∥Φ ⊗ 1L(X )

∥∥
1 and |||Φ|||∞ =

∥∥Φ ⊗ 1L(Y)
∥∥

∞ for all
Φ ∈ T(X ,Y).

2.2. Some quantum terminology
A vector u ∈ S(Cn ⊗Cm) is called maximally entangled if, for r = min(n, m),
there exists orthonormal sets {xi}r

i=1 ⊂ Cn and {yi}r
i=1 ⊂ Cm for which

u =
1√
r

r

∑
i=1

xi ⊗ yi. (7)

When m ≤ n, this is equivalent to the statement that there exists an isome-
try A ∈ U(Cm, Cn) for which u = 1√

r vec(A). We denote τX ∈ D(X ⊗X ) as
the canonical maximally entangled state, defined as

τX =
1
n

vec(1X )vec(1X )∗, (8)
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where according to the vectorization convention vec(1X ) = ∑n
i=1 ei ⊗ ei.

For a quantum system with associated f.d. complex Hilbert space X ,
the states of the system are elements of D(X ) = {ρ ∈ Pos(X ) : Tr(ρ) = 1},
called either the set of density operators, density matrices, or quantum states.
Quantum transformations, called quantum channels, from a system associ-
ated with X to one associated with Y are given by the completely positive
and trace preserving maps from L(X ) to L(Y), denoted C(X ,Y).

For a finite set Σ and some X , a measurement with outcomes Σ on a
quantum system associated with X is a function µ : Σ→ Pos(X ) such that
∑a∈Σ µ(a) = 1X . If such a measurement is performed on a quantum state
ρ ∈ D(X ), the probability of outcome a ∈ Σ is given by the inner product
〈µ(a), ρ〉. A projective measurement is a measurement µ : Σ → Pos(X ) for
which µ(a) is an orthogonal projection for every a ∈ Σ.

3. Channel discrimination
The relevance of the trace and completely bounded trace norms in quantum
theory arises in part from their interpretation in terms of quantum state and
channel discrimination. These tasks can be formalized in terms of games,
where how easy (or difficult) it is to discriminate two states or channels is
given by the optimal probability with which this game can be won.

Quantum state discrimination games are single player games which
proceed as follows. Descriptions of two quantum states ρ0, ρ1 ∈ D(X ) and
a probability λ ∈ [0, 1] are known to the player. A bit α ∈ {0, 1} is sampled
by the referee according to the distribution p(0) = λ, p(1) = 1− λ. A single
copy of the state ρα is given to the player, from which they must guess what
α was by measuring the system (i.e. guess which of the two states they were
given). For a given measurement µ : {0, 1} → Pos(X ), the probability of
guessing correctly in a single run of the game is given by the expression

λ〈µ(0), ρ0〉+ (1− λ)〈µ(1), ρ1〉, (9)

and hence the optimal success probability is given as the above expression
optimized over all choices of two-outcome measurements. The following
theorem [7, 8] provides a simple expression for the optimal success proba-
bility, which generalizes the expression for the classical version of the game.

Theorem 1 (Holevo-Helstrom theorem). Let X be an f.d. complex Hilbert
space, let ρ0, ρ1 ∈ D(X ) be density operators, and let λ ∈ [0, 1] be a real number.
For every choice of measurement µ : {0, 1} → Pos(X ), it holds that

λ〈µ(0), ρ0〉+ (1− λ)〈µ(1), ρ1〉 ≤
1
2
+

1
2
‖λρ0 − (1− λ)ρ1‖1. (10)

Moreover there exists a projective measurement for which the inequality in this
statement can be replaced by an equality.

Hence, the trace norm has an operational interpretation in terms of
this discrimination game. A similar discrimination game can be defined



6 Daniel Puzzuoli and John Watrous

for quantum channels. As in the state case, descriptions of two quantum
channels Φ0, Φ1 ∈ C(X ,Y) and a probability λ ∈ [0, 1] are known to the
player. The referee samples a bit α ∈ {0, 1} according to the distribution
p(0) = λ, p(1) = 1− λ. The player is then given a single use of Φα, and
must guess α. This game has an additional degree of freedom from the
state case, as the player must choose a quantum state to feed into Φα. Once
this state is chosen the problem reduces to the problem of discriminating
Φ0(ρ) and Φ1(ρ). An additional layer of complexity is that the player may
have access to an ancillary quantum system with f.d. complex Hilbert space
Z , and can choose a state ρ ∈ D(X ⊗Z), pass the system associated to X
through Φα, then attempt to discriminate the states

(
Φ0 ⊗ 1L(Z)

)
(ρ) and(

Φ1 ⊗ 1L(Z)
)
(ρ). Hence, by the above theorem, for a choice of Z and ρ ∈

D(X ⊗Z), the optimal success probability of guessing correctly is

1
2
+

1
2

∥∥λ
(
Φ0 ⊗ 1L(Z)

)
(ρ)− (1− λ)

(
Φ1 ⊗ 1L(Z)

)
(ρ)
∥∥

1, (11)

and the optimal success probability for the game as a whole is given as an
optimization of this expression over all choices of Z and ρ ∈ D(X ⊗ Z).
With this we arrive at the following theorem (see [2, Chapter 3]).

Theorem 2 (Holevo-Helstrom theorem for channels). Let X and Y be finite
dimensional complex Hilbert spaces, let Φ0, Φ1 ∈ C(X ,Y) be channels, and let
λ ∈ [0, 1] be a real number. For any choice of a positive integer m, a density
operator ρ ∈ D(X ⊗ Cm), and a measurement µ : {0, 1} → Pos(Y ⊗ Cm), it
holds that

λ
〈
µ(0),

(
Φ0 ⊗ 1L(Cm)

)
(ρ)
〉
+ (1− λ)

〈
µ(1),

(
Φ1 ⊗ 1L(Cm)

)
(ρ)
〉

≤ 1
2
+

1
2
|||λΦ0 − (1− λ)Φ1|||1.

(12)

Moreover, if m ≥ dim(X ), then there exists a density operator ρ ∈ D(X ⊗Cm)
and projective measurement µ : {0, 1} → Pos(Y ⊗Cm) for which equality in this
relation is achieved.

The question we ask in this paper is: does equality necessarily hold
in Equation (12) for some state and measurement when m = dim(Y)? In
words, is it possible in all cases to optimally discriminate two quantum
channels using an ancilla system that is the same size as the channel out-
put? Given the current form of Theorem 2, this question only has relevance
when dim(Y) < dim(X ).

A more general version of this question is: is it true that

|||Ψ|||1 =
∥∥Ψ⊗ 1L(Y)

∥∥
1 (13)

for all Ψ ∈ T(X ,Y)? Due to the 1 and ∞ norms being dual to each other,
this is equivalent to asking whether

|||Ψ|||∞ =
∥∥Ψ⊗ 1L(X )

∥∥
∞ (14)
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for all Ψ ∈ T(X ,Y). It follows from work of Haagerup [3] that this general
question has a negative answer. Despite this negative answer, in channel
discrimination games we are specifically interested in Ψ of a special form,
i.e. Ψ = λΦ0 − (1− λ)Φ1 for some Φ0, Φ1 ∈ C(X ,Y) and λ ∈ [0, 1], and
one might be inclined to question whether (13) could still hold for all linear
maps of this form. Moreover, Haagerup’s proof provides an answer to the
general question through a somewhat indirect path, and we believe that
it is helpful from the viewpoint of quantum information theory to obtain
explicit examples of channels for which equality cannot hold in (12) when
m = dim(Y).

In this paper we construct such examples, thereby answering both of
the questions raised above negatively. In particular, we prove the following.

Theorem 3. For every choice of positive integers n ≥ 2 and k ≥ 1 there exist
channels

Γ(0)
n,k , Γ(1)

n,k ∈ C
(
Cnk

, Ckn) (15)

such that for all real numbers λ ∈ (0, 1) it holds that∥∥∥λΓ(0)
n,k ⊗1L(Y)− (1−λ)Γ(1)

n,k ⊗1L(Y)

∥∥∥
1
<
∣∣∣∣∣∣∣∣∣λΓ(0)

n,k − (1− λ)Γ(1)
n,k

∣∣∣∣∣∣∣∣∣
1
= 1 (16)

for every f.d. complex Hilbert space Y satisfying dim(Y) < nk.

Note that in the setting of channel discrimination, by Theorem 2 the
equality ∣∣∣∣∣∣∣∣∣λΓ(0)

n,k − (1− λ)Γ(1)
n,k

∣∣∣∣∣∣∣∣∣
1
= 1 (17)

implies that the channels Γ(0)
n,k and Γ(1)

n,k can be perfectly discriminated for
any λ ∈ (0, 1). Also, as the input dimension is nk, and the output dimension
is nk, this family of channels contains instances with arbitrary finite gap
between the input and output dimensions.

In the remainder of this section we describe the construction of a
family of channels for which the requirements of the above theorem are
satisfied. The proof that these channels indeed satisfy these requirements
appears in the two sections that follow.

For every integer n ≥ 2, the Werner-Holevo channels are defined as

Φ(0)
n =

1
n + 1

(Ω + T), Φ(1)
n =

1
n− 1

(Ω− T), (18)

where Ω ∈ CP(X ) is defined as Ω(X) = Tr(X)1X on all X ∈ L(X ).
Throughout this paper, for any finite sequence of f.d. complex Hilbert
spaces X1, . . . ,Xk, we will denote the reduction to the ith subsystem as
Ri ∈ C(X1 ⊗ · · · ⊗ Xk,Xi). That is, for all X1 ∈ L(X1), . . . , Xk ∈ L(Xk), the
channel Ri acts as

Ri(X1 ⊗ · · · ⊗ Xk) =
(

∏
j 6=i

Tr(Xj)
)

Xi. (19)
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Now, for integers n ≥ 2 and k ≥ 1, assume that X1, . . . ,Xk and X
denote copies of the space Cn. We define the channels

Γ(α)
n,k ∈ C(X1 ⊗ · · · ⊗ Xk, Ck ⊗X ) (20)

for all X ∈ L(X1 ⊗ · · · ⊗ Xk) as

Γ(α)
n,k (X) =

1
k

k

∑
i=1

Eii ⊗Φ(α)
n
(

Ri(X)
)
, (21)

for each α ∈ {0, 1}, where each Ri is regarded as a channel of the form
Ri ∈ C(X1 ⊗ · · · ⊗ Xk,X ). Operationally, these channels represent ran-
domly trashing all but one of the input subsystems while keeping a classical
record of which is kept, then applying one of the Werner-Holevo channels.
It holds that Γ(α)

n,1
∼= Φ(α)

n under the association C⊗X ∼= X , and hence the
Werner-Holevo channels themselves are contained in this family.

Similarly, define mappings

Ψn,k ∈ T(X1 ⊗ · · · ⊗ Xk, Ck ⊗X ) (22)

for all X ∈ L(X1 ⊗ · · · ⊗ Xk) as

Ψn,k(X) =
k

∑
i=1

Eii ⊗ T
(

Ri(X)
)
. (23)

For λn = n+1
2n the following relations hold

1
n

T = λnΦ(0)
n − (1− λn)Φ

(1)
n , (24)

1
nk

Ψn,k = λnΓ(0)
n,k − (1− λn)Γ

(1)
n,k . (25)

The crux of proving Theorem 3 will be to prove that∥∥Ψn,k ⊗ 1L(Y)
∥∥

1 < |||Ψn,k|||1 = nk (26)

whenever dim(Y) < nk, which is equivalent to the desired norm relation
of the theorem for the particular probability λn. The specific value λn is
used to make many expressions easier to work with, and the extension of
the result from a particular probability to arbitrary λ ∈ (0, 1) will be made
by a simple argument.

4. Induced 1-norm of partial transpose
For proving the relations in Equation (26) it will be useful to first examine
expressions of the form ∥∥(T ⊗ 1L(Y)

)
(X)

∥∥
1 (27)

for X ∈ L(X ⊗ Y) with ‖X‖1 = 1. When X ∈ D(X ⊗ Y) this quantity (up
to multiplicative and additive scalars) has been called the negativity of the
state X [4], and is an easy to compute, though non-faithful entanglement
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measure (where “non-faithful” means that there exist entangled states that
minimize this quantity). We will abuse terminology by referring to Equa-
tion (27) as the negativity of X, even when X is not a state.

We will begin by reviewing some facts about negativity. When X is a
rank-1 operator, the expression (27) takes a simple form, as proved in [4,
Proposition 8].

Proposition 4 (Vidal and Werner). Let X and Y be f.d. complex Hilbert spaces.
For A, B ∈ L(Y ,X ) it holds that∥∥(T ⊗ 1L(Y)

)
(vec(A)vec(B)∗)

∥∥
1 = ‖A‖1‖B‖1. (28)

Note that [4, Proposition 8] is proven for the case A = B, but the
above can be reasoned similarly. From this the following known facts can
be deduced.

Proposition 5. Let X = Cn, Y = Cm. For u, v ∈ S(X ⊗Y), it holds that∥∥(T ⊗ 1L(Y)
)
(uv∗)

∥∥
1 ≤ min(n, m), (29)

with equality if and only if both u and v are maximally entangled. In particular
this implies ∥∥T ⊗ 1L(Y)

∥∥
1 = min(n, m). (30)

Proof. For u, v ∈ S(X ⊗ Y), let A, B ∈ L(Y ⊗ X ) satisfy u = vec(A) and
v = vec(B). By Proposition 4,∥∥(T ⊗ 1L(Y)

)
(vec(A)vec(B)∗)

∥∥
1 = ‖A‖1‖B‖1 (31)

≤ min(n, m)‖A‖2‖B‖2 (32)

= min(n, m), (33)

where the inequality follows from the inequality ‖A‖1 ≤
√

min(n, m)‖A‖2,
with equality if and only if either A or A∗ is a scalar multiple of an isometry.
Hence, we have the inequality in Equation (29), with equality holding if and
and only if u and v are maximally entangled.

Equation (30) follows as the induced 1-norm can be written as an
optimization restricted to operators of the form uv∗ for u, v ∈ S(X ⊗Y). �

1 We remark that the equality condition for Equation (29), when u = v,
is the well known fact that the only pure states which maximize negativity
are maximally entangled. We also remark that Equation (30) was proved in
[9, Theorem 1.2], where it was proved that

∥∥T⊗ 1L(Y)
∥∥

∞ = n, and because
partial transposition is self-adjoint,

∥∥T ⊗ 1L(Y)
∥∥

∞ =
∥∥T ⊗ 1L(Y)

∥∥
1.

Proposition 5 implies, for n ≥ 2, m ≥ 1, and λn = n+1
2n , that

max
{∥∥λnΦ(0)

n (ρ)− (1− λn)Φ
(1)
n (ρ)

∥∥
1 : ρ ∈ D(Cn ⊗Cm)

}
=

1
n
∥∥T ⊗ 1L(Cm)

∥∥
1 =

1
n

min(n, m).
(34)
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Hence, for an ancilla of dimension m, the optimal success probability of a
channel discrimination game for the Werner-Holevo channels with proba-
bility λn is

1
2
+

1
2n

min(n, m). (35)

In particular, this implies that this channel discrimination game can be won
with certainty, and furthermore, it can be won with certainty if and only if
m ≥ n.

To prove Theorem 3 it will be useful to generalize Proposition 5 to a
full characterization of when

∥∥(T ⊗ 1L(Y)
)
(X)

∥∥
1 = n for (a not-necessarily

rank-1) X ∈ L(X ⊗ Y) with ‖X‖1 = 1. First we prove a proposition about
equality conditions in the triangle inequality for the trace norm for sets of
orthogonal operators, which requires two facts. The first is that for A ∈
L(X ), it holds that

‖A‖1 = max{|〈U, A〉| : U ∈ U(X )}, (36)

and the second is that Tr(A) = ‖A‖1 if and only if A ≥ 0.

Proposition 6. Let {Ai}r
i=1 ⊂ L(X ,Y) be an orthogonal set. If∥∥∥∥ r

∑
i=1

Ai

∥∥∥∥
1
=

r

∑
i=1
‖Ai‖1, (37)

then it holds that Ai A∗j = 0 and A∗i Aj = 0 for all i 6= j.

Proof. Assume first that Z is an arbitrary f.d. complex Hilbert space, and
B, C ∈ L(Z) are orthogonal operators for which the equality ‖B + C‖1 =
‖B‖1 + ‖C‖1 holds. Let U ∈ U(Z) be a unitary operator satisfying

〈U, B + C〉 = ‖B + C‖1. (38)

It follows that 〈U, B〉 = ‖B‖1 and 〈U, C〉 = ‖C‖1, and therefore U∗B = B∗U
and U∗C = C∗U are both positive semidefinite operators. We have

〈B∗U, U∗C〉 = 〈U∗B, C∗U〉 = 〈B, C〉 = 0, (39)

and therefore (B∗U)(U∗C) = 0 and (U∗B)(C∗U) = 0, as orthogonal pos-
itive semidefinite operators have product equal to zero. It follows that
B∗C = 0 and BC∗ = 0.

Now choose i, j ∈ {1, . . . , r} with i 6= j. The equality (37) implies that
‖Ai + Aj‖1 = ‖Ai‖1 + ‖Aj‖1. Defining B, C ∈ L(X ⊕Y) as

B =

(
0 0
Ai 0

)
and C =

(
0 0
Aj 0

)
, (40)

we find that B and C are orthogonal operators satisfying ‖B + C‖1 =
‖B‖1 + ‖C‖1, and therefore B∗C = 0 and BC∗ = 0 from the argument
above. This implies that Ai A∗j = 0 and A∗i Aj = 0 as required. �

We remark that the converse of the above proposition holds as well.
With this in hand we can generalize Proposition 5.
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Theorem 7. Let X = Cn and Y = Cm. For X ∈ L(X ⊗Y) with ‖X‖1 ≤ 1, the
following are equivalent.

1.
∥∥(T ⊗ 1L(Y)

)
(X)

∥∥
1 = n.

2. m ≥ n, and there exists a choice of r ∈ {1, . . . , bm/nc}, σ ∈ D(Cr), and
U, V ∈ U(X ⊗Cr,Y) for which

X = (1X ⊗U)(τX ⊗ σ)(1X ⊗V∗), (41)

where τX ∈ D(X ⊗X ) is the canonical maximally entangled state.
When X ∈ D(X ⊗Y) the above equivalence holds with V = U.

Proof. The fact that statement 2 implies statement 1 follows by a direct
computation together with Proposition 5.

Now suppose that statement 1 holds, and observe that Proposition 5
immediately implies m ≥ n. Let

X =
r

∑
i=1

sixiy∗i (42)

be a singular value decomposition of X, where r = rank(X). By Propo-
sition 5 all of the xi and yi must be maximally entangled, as the triangle
inequality would otherwise allow one to conclude that∥∥(T ⊗ 1L(Y)

)
(X)

∥∥
1 < n. (43)

Hence, for each i there exist isometries Ai, Bi ∈ U(X ,Y) for which

xi =
1√
n

vec(AT
i ) and yi =

1√
n

vec(BT
i ). (44)

Now, note that(
T ⊗ 1L(Y)

)
(X) =

1
n

WXY
r

∑
i=1

si Ai ⊗ B∗i , (45)

so that

n =
∥∥(T ⊗ 1L(Y)

)
(X)

∥∥
1 =

1
n

∥∥∥ r

∑
i=1

si Ai ⊗ B∗i
∥∥∥

1

≤ 1
n

r

∑
i=1

si
∥∥Ai ⊗ B∗i

∥∥
1 = n,

(46)

where the the last equality follows from the Ai and Bi being isometries, and
therefore

‖Ai ⊗ B∗i ‖1 = n2 (47)
for every i. Hence, we have equality in the triangle inequality for these
operators (which are orthogonal as they arise from a singular value decom-
position), and so Proposition 6 implies

(Ai ⊗ B∗i )
∗(Aj ⊗ B∗j ) = A∗i Aj ⊗ BiB∗j = 0, (48)

and

(Ai ⊗ B∗i )(Aj ⊗ B∗j )
∗ = Ai A∗j ⊗ B∗i Bj = 0 (49)
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for all i 6= j. As these are isometries, BiB∗j 6= 0, so the first expression above
gives A∗i Aj = 0, and likewise the second implies B∗i Bj = 0 for all i 6= j.
Hence the Ai (and respectively the Bi) embed X into r mutually orthogonal
n-dimensional subspaces of Y , giving rn ≤ m.

Lastly, to get the particular form of X, define U, V ∈ U(X ⊗Cr,Y) as

U =
r

∑
i=1

Ai ⊗ e∗i and V =
r

∑
i=1

Bi ⊗ e∗i , (50)

where the fact that U and V are isometries follows from A∗i Aj = 0 = B∗i Bj
for i 6= j. Defining

σ =
r

∑
i=1

siEii ∈ D(Cr), (51)

we see that

X =
1
n

r

∑
i=1

sivec(AT
i )vec(BT

i )
∗ (52)

= (1X ⊗U)
( r

∑
i=1

si
n

vec(1X )vec(1X )∗ ⊗ Eii

)
(1X ⊗V∗) (53)

= (1X ⊗U)(τX ⊗ σ)(1X ⊗V∗), (54)

as required.
When X ∈ D(X ⊗Y), in the above Bi = Ai, and hence V = U. �

5. Proof of counterexamples
In this section we will prove Theorem 3 by generalizing Theorem 7. We
show that, for any X1, . . . ,Xk,Y , and X ∈ L(X1 ⊗ · · · ⊗ Xk ⊗ Y) with
‖X‖1 = 1, ∥∥(TXi ⊗ 1L(Y)

)((
Ri ⊗ 1L(Y)

)
(X)

)∥∥
1 = dim(Xi), (55)

for all 1 ≤ i ≤ k if and only if∥∥(TX1⊗···⊗Xk ⊗ 1L(Y)
)
(X)

∥∥
1 =

k

∏
i=1

dim(Xi) = dim(X1 ⊗ · · · ⊗ Xk), (56)

where we are using subscripts on the transpose map to be explicit about
which space it is acting on. In other words, all of the Xi subsystems are
maximally entangled with Y (as measured by negativity) if and only if
X1 ⊗ · · · ⊗ Xk is maximally entangled with Y . This equivalence is given in
Theorem 10, which is essentially induction applied to Theorem 7. Figure 1
gives a visual presentation of the structure of the operators. By applying
this equivalence, we conclude that, for X1, . . . ,Xk,X denoting copies of Cn,
and X ∈ L(X1 ⊗ · · · ⊗ Xk ⊗Y) with ‖X‖1 = 1,∥∥(Ψn,k ⊗ 1L(Y)

)
(X)

∥∥
1 = nk (57)
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if and only if ∥∥(TX1⊗···⊗Xk ⊗ 1L(Y)
)
(X)

∥∥
1 = nk (58)

for all i, and hence Equation (57) is only possible if

dim(Y) ≥ nk = dim(X1 ⊗ · · · ⊗ Xk). (59)

From this Theorem 3 will follow.

X X

Cr

τX

σ

(a) Theorem 7

X1
...

Xk

X1
...

Xk

Cr

τX1

...
τXk

σ

(b) Theorem 10

Figure 1. This is a diagrammatic representation of the
structures given in Theorem 7 and Theorem 10. In The-
orem 7 the ancilla system factorizes into X ⊗ Cr, and
the operator X looks like something maximally entangled
across the X systems with σ left over. In Theorem 10,
this factorization-and-maximally-entangled structure is re-
peated k-times, again, potentially with some σ left over.

Before beginning we introduce an implicit permutation notation. At
points in the section we will be working with operators that act on a ten-
sor product space, where the ordering of the tensor factors for which it is
convenient to specify the operator is not the same as the ordering used in
the context that the operator appears. This primarily occurs for operators
of product form. For example, given A ∈ L(X ⊗ Z), and B ∈ L(Y), the
operator A⊗ B ∈ L(X ⊗ Z ⊗ Y) has a simple form, but if our spaces are
naturally ordered as X ⊗Y ⊗Z , then we must write

(1X ⊗WZ ,Y )(A⊗ B)(1X ⊗W∗Z ,Y ) (60)

to specify it as an operator in L(X ⊗Y ⊗Z), which can become clunky.
To avoid this, we introduce the following notation. For some finite list

of f.d. Hilbert spaces Z1, . . . ,Zk, a permutation σ : {1, . . . , k} → {1, . . . , k},
and an operator X ∈ L(Z1 ⊗ · · · ⊗ Zk), we write

X︸︷︷︸
∈L(Zσ(1)⊗···⊗Zσ(k))

= PXP∗, (61)

where P ∈ U(Z1 ⊗ · · · ⊗ Zk,Zσ(1) ⊗ · · · ⊗ Zσ(k)) is the isometry which per-
mutes the subsystems as given in the definition. For the example in the
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preceding paragraph, this notation gives

A⊗ B︸ ︷︷ ︸
∈L(X⊗Y⊗Z)

= (1X ⊗WZ ,Y )(A⊗ B)(1X ⊗W∗Z ,Y ). (62)

Note as well that for f.d. complex Hilbert spaces A and B, it holds that

τA⊗B = τA ⊗ τB︸ ︷︷ ︸
∈L(A⊗B⊗A⊗B)

. (63)

In the above there is a potential ambiguity as multiple copies of the same
space appear, so it is not necessarily well defined. In this case however, the
operator is invariant under swapping the order of these copies, and so there
is no real ambiguity.

Lemma 8. Let X ∈ L(X ⊗ Y) with ‖X‖1 = 1. If TrY (X) = uv∗ for some
u, v ∈ S(X ), then there exists σ ∈ D(Y) for which X = uv∗ ⊗ σ.

Proof. First consider the case in which X is positive semidefinite, and there-
fore a density operator by the condition ‖X‖1 = 1. The partial trace is a
positive map, from which it follows that v = u. Define a projection oper-
ator Π = 1X − uu∗, and observe that 〈Π⊗ 1Y , X〉 = 〈Π, TrY (X)〉 = 0. As
X and Π⊗ 1Y are both positive semidefinite, it follows that (Π⊗ 1Y )X =
X(Π⊗ 1Y ) = 0, and therefore

X = (uu∗ ⊗ 1Y + Π⊗ 1Y )X(uu∗ ⊗ 1Y + Π⊗ 1Y ) (64)

= (uu∗ ⊗ 1Y )X(uu∗ ⊗ 1Y ) (65)

= uu∗ ⊗ σ, (66)

where σ = (u∗ ⊗ 1Y )X(u⊗ 1Y ) ∈ D(Y).
For the general case, let U ∈ U(X ) be a unitary operator satisfying

Uu = v. It follows that

‖(U ⊗ 1Y )X‖1 = 1 = Tr((U ⊗ 1Y )X), (67)

and therefore (U ⊗ 1Y )X is positive semidefinite. Substituting X with the
operator (U ⊗ 1Y )X in the case considered above yields (U ⊗ 1Y )X =
vv∗ ⊗ σ, and therefore X = uv∗ ⊗ σ, for some choice of σ ∈ D(Y), which
completes the proof. �

Lemma 9. Let X ∈ L(X ,Y), and let Π1 ∈ L(Y) and Π2 ∈ L(X ) be orthogonal
projections. If

‖Π1XΠ2‖1 = ‖X‖1, (68)
then it holds that Π1XΠ2 = X.

Proof. Let X = ∑r
i=1 siuiv∗i be a singular value decomposition of X. Then,

we have that
r

∑
i=1

si = ‖X‖1 = ‖Π1XΠ2‖1 =
∥∥∥ r

∑
i=1

siΠ1uiv∗i Π2

∥∥∥
1

≤
r

∑
i=1

si‖Π1uiv∗i Π2‖1 ≤
r

∑
i=1

si.
(69)
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Hence, all inequalities are equalities, which implies 1 = ‖Π1uiv∗i Π2‖1 =
‖Π1ui‖‖Π2vi‖ for all 1 ≤ i ≤ r, implying that Π1ui = ui and Π2vi = vi for
all i, and hence Π1XΠ2 = X. �

Theorem 10. Let X1 = Cn1 , . . . ,Xk = Cnk , Y = Cm, N = ∏k
i=1 ni =

dim(X1 ⊗ · · · ⊗ Xk), and let X ∈ L(X1 ⊗ · · · ⊗ Xk ⊗ Y) with ‖X‖1 = 1. The
following are equivalent:

1.
∥∥(TXi ⊗ 1L(Y)

)((
Ri ⊗ 1L(Y)

)
(X)

)∥∥
1 = ni, for all 1 ≤ i ≤ k.

2.
∥∥(TX1⊗···⊗Xk ⊗ 1L(Y)

)
(X)

∥∥
1 = N.

3. m ≥ N, and there is some r ∈ {1, . . . , bm/Nc}, σ ∈ D(Cr), and U, V ∈
U(X1 ⊗ · · · ⊗ Xk ⊗Cr,Y) for which

X = (1X1⊗···⊗Xk ⊗U)(τX1⊗···⊗Xk ⊗ σ)(1X1⊗···⊗Xk ⊗V∗), (70)

where τX1⊗···⊗Xk ∈ D(X1 ⊗ · · · ⊗ Xk ⊗ X1 ⊗ · · · ⊗ Xk) is the canonical
maximally entangled state.

If X ∈ D(X1 ⊗ · · · ⊗ Xk ⊗Y) the above equivalence holds with V = U.

Proof. The equivalence of statements 2 and 3 is the content of Theorem 7,
and from this we also retrieve the statement that if X is a density operator,
then we can take V = U in statement 3. That statement 3 implies statement
1 follows by a direct computation, along with the observation in Equation
(63). When k = 1, statements 1 and 2 are the same, so in this case there
is nothing to prove. When k = 2 we will show that statement 1 implies
statement 3 (in which case we will have the full equivalence for k = 2), then
use induction to directly show that statement 1 is equivalent to statement 2
for k > 2.

For statement 1 implies statement 3 in the k = 2 case, to simplify
notation we denote A = X1, B = X2, a = n1, and b = n2, and hence
N = ab. By Theorem 7 it follows from

∥∥(TA ⊗ 1L(Y)
)
(TrB(X))

∥∥
1 = a that

a ≤ m, and there exists s ∈ {1, . . . , bm/ac}, ν ∈ D(Cs), and isometries
A, B ∈ U(A⊗Cs,Y) for which

TrB(X) = (1A ⊗ A)(τA ⊗ ν)(1A ⊗ B∗). (71)

This implies that

TrB⊗Cs((1A⊗B ⊗ A∗)X(1A⊗B ⊗ B)) = τA. (72)

Note that

1 = ‖τA‖1 = ‖TrB⊗Cs((1A⊗B ⊗ A∗)X(1A⊗B ⊗ B))‖1 (73)

≤ ‖(1A⊗B ⊗ A∗)X(1A⊗B ⊗ B)‖1 ≤ ‖X‖1 = 1, (74)

giving ‖(1A⊗B ⊗ A∗)X(1A⊗B ⊗ B)‖1 = 1, and so Lemma 8 implies that
there exists η ∈ D(B ⊗Cs) for which

(1A⊗B ⊗ A∗)X(1A⊗B ⊗ B) = τA ⊗ η︸ ︷︷ ︸
∈L(A⊗B⊗A⊗Cs)

, (75)
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and hence

(1A⊗B ⊗ AA∗)X(1A⊗B ⊗ BB∗) = (1A⊗B ⊗ A) (τA ⊗ η)︸ ︷︷ ︸
∈L(A⊗B⊗A⊗Cs)

(1A⊗B ⊗ B∗). (76)

As the above operator has trace norm 1, and 1A⊗B ⊗ AA∗ and 1A⊗B ⊗ BB∗

are both orthogonal projections, Lemma 9 implies

X = (1A⊗B ⊗ A) (τA ⊗ η)︸ ︷︷ ︸
∈L(A⊗B⊗A⊗Cs)

(1A⊗B ⊗ B∗). (77)

Next, it holds that∥∥(TB ⊗ 1L(Cs)

)
(η)
∥∥

1 =
∥∥(TB ⊗ 1L(Y)

)
(TrA(X))

∥∥
1 = b, (78)

and so again by Theorem 7, b ≤ s, and there exists r ∈ {1, . . . , bs/bc},
σ ∈ D(Cr), and an isometry S ∈ U(B ⊗Cr, Cs) for which

η = (1B ⊗ S)(τB ⊗ σ)(1B ⊗ S∗). (79)

Hence, letting U = A(1A ⊗ S) and V = B(1A ⊗ S) we get that

X = (1A⊗B ⊗ A) [τA ⊗ (1B ⊗ S)(τB ⊗ σ)(1B ⊗ S∗)]︸ ︷︷ ︸
∈L(A⊗B⊗A⊗Cs)

(1A⊗B ⊗ B∗) (80)

= (1A⊗B ⊗U) (τA ⊗ τB ⊗ σ)︸ ︷︷ ︸
∈L(A⊗B⊗A⊗B⊗Cr)

(1A⊗B ⊗V∗) (81)

= (1A⊗B ⊗U)(τA⊗B ⊗ σ)(1A⊗B ⊗V∗), (82)

and ab ≤ as ≤ m, and r ≤ s/b ≤ m/ab, as required.
Lastly, we show that statement 1 is equivalent to statement 2 for all k

by induction. So, assuming the equivalence holds for some k ≥ 2, we show
it holds for k + 1. Note that∥∥(TXi ⊗ 1L(Y)

)((
Ri ⊗ 1L(Y)

)
(X)

)∥∥
1 = ni (83)

for all 1 ≤ i ≤ k, by the induction hypothesis, is equivalent to∥∥(TX1⊗···⊗Xk ⊗ 1L(Y)
)
(TrXk+1

(X))
∥∥

1 =
k

∏
i=1

ni, (84)

which, together with
∥∥(TXk+1

⊗1L(Y)
)((

Rk+1⊗1L(Y)
)
(X)

)∥∥
1 = nk+1, again

by the induction hypothesis, is equivalent to∥∥(TX1⊗···⊗Xk+1
⊗ 1L(Y)

)
(X)

∥∥
1 =

k+1

∏
i=1

ni, (85)

as required. �

The content of Figure 1 follows by the above theorem along with the
observation

τX1⊗···⊗Xk = τX1 ⊗ · · · ⊗ τXk︸ ︷︷ ︸
∈L(X1⊗···⊗Xk⊗X1⊗···⊗Xk)

. (86)
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For the case n1 = · · · = nk = n, by noting that
∥∥(Ψn,k ⊗ 1L(Y)

)
(X)

∥∥
1 = nk

if and only if ∥∥(T ⊗ 1L(Y)
)((

Ri ⊗ 1L(Y)
)
(X)

)∥∥
1 = n (87)

for all 1 ≤ i ≤ k, we arrive at the following.

Corollary 11. Let X ,X1, . . . ,Xk denote copies of Cn, and let Y = Cm. For
X ∈ L(X1 ⊗ · · · ⊗ Xk ⊗Y) with ‖X‖1 = 1, the following are equivalent.

1.
∥∥(Ψn,k ⊗ 1L(Y)

)
(X)

∥∥
1 = nk.

2.
∥∥(TX1⊗···⊗Xk ⊗ 1L(Y)

)
(X)

∥∥
1 = nk.

3. m ≥ nk, and there is some r ∈ {1, . . . , bm/nkc}, σ ∈ D(Cr), and U, V ∈
U(X1 ⊗ · · · ⊗ Xk ⊗Cr,Y) for which

X = (1X1⊗···⊗Xk ⊗U)(τX1⊗···⊗Xk ⊗ σ)(1X1⊗···⊗Xk ⊗V∗), (88)

where τX1⊗···⊗Xk ∈ D(X1 ⊗ · · · ⊗ Xk ⊗ X1 ⊗ · · · ⊗ Xk) is the canonical
maximally entangled state.

When X ∈ D(X1 ⊗ · · · ⊗ Xk ⊗Y) the above equivalence holds with V = U.

In the setting of channel discrimination, the above corollary gives that
a state ρ ∈ D(X1 ⊗ · · · ⊗ Xk ⊗ Y) can be used to perfectly discriminate
Γ(0)

n,k and Γ(1)
n,k with probability λn if and only if it can be used to perfectly

discriminate Φ(0)
nk and Φ(1)

nk with probability λn. We are now in a position to
prove Theorem 3.

Proof of Theorem 3. Fix n ≥ 2 and k ≥ 1, and let X1, . . . ,Xk, and X denote
copies of Cn. For our examples we identify Cnk ∼= X1 ⊗ · · · ⊗ Xk and Ckn ∼=
Ck ⊗X .

Let Γ(0)
n,k , Γ(1)

n,k , Ψn,k ∈ T(X1 ⊗ · · · ⊗ Xk, Ck ⊗ X ) be as defined in Sec-
tion 3. First we show that∥∥∥λnΓ(0)

n,k ⊗ 1L(Y) − (1− λn)Γ
(1)
n,k ⊗ 1L(Y)

∥∥∥
1

<
∣∣∣∣∣∣∣∣∣λnΓ(0)

n,k − (1− λn)Γ
(1)
n,k

∣∣∣∣∣∣∣∣∣
1
= 1,

(89)

whenever dim(Y) < nk, where λn = n+1
2n . The above is equivalent to show-

ing that ∥∥Ψn,k ⊗ 1L(Y)
∥∥

1 < |||Ψn,k|||1 = nk (90)

whenever dim(Y) < nk.
By Corollary 11, for τX1⊗···⊗Xk ∈ D(X1 ⊗ · · · ⊗ Xk ⊗X1 ⊗ · · · ⊗ Xk) it

holds that ∥∥(Ψn,k ⊗ 1L(X1⊗···⊗Xk)

)
(τX1⊗···⊗Xk )

∥∥
1 = nk, (91)

and hence |||Ψn,k|||1 = nk. Furthermore, for any f.d. complex Hilbert space Y
with dim(Y) < nk and X ∈ L(X1⊗ · · · ⊗Xk⊗Y) with ‖X‖1 = 1, the above
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corollary implies that ∥∥(Ψn,k ⊗ 1L(Y)
)
(X)

∥∥
1 < nk, (92)

giving that ∥∥Ψn,k ⊗ 1L(Y)
∥∥

1 < nk. (93)

This completes the proof of Equation (90).
Lastly, we need to show Equation (89) holds for any λ ∈ (0, 1), not

just the particular choice λn. To do this we require the following fact: for
A, B ∈ L(Z) with ‖A‖1 ≤ 1 and ‖B‖1 ≤ 1, if ‖αA − (1 − α)B‖1 = 1
for a particular α ∈ (0, 1), then it holds that ‖λA − (1 − λ)B‖1 = 1 for
all λ ∈ (0, 1). To see this, note that the assumption is equivalent to the
existence of a unitary U ∈ L(Z) for which

〈U, αA− (1− α)B〉 = α〈U, A〉+ (1− α)〈U,−B〉 = 1. (94)

As |〈U, A〉| ≤ ‖A‖1 ≤ 1 and |〈U,−B〉| ≤ ‖B‖1 ≤ 1, the above equality
implies that 〈U, A〉 = 〈U,−B〉 = 1. Thus, for any λ ∈ (0, 1), we have

1 = 〈U, λA− (1− λ)B〉 ≤ ‖λA− (1− λ)B‖1 ≤ 1. (95)

Thus, as there exists X ∈ L(X1 ⊗ · · · ⊗ Xk ⊗X1 ⊗ · · · ⊗ Xk) with trace
norm 1 for which∥∥∥λn

(
Γ(0)

n,k ⊗ 1L(X1⊗···⊗Xk)

)
(X)− (1− λn)

(
Γ(1)

n,k ⊗ 1L(X1⊗···⊗Xk)

)
(X)

∥∥∥
1
= 1

(96)

it follows by the above paragraph that the above equation must hold for all
λ ∈ (0, 1), and therefore∣∣∣∣∣∣∣∣∣λΓ(0)

n,k − (1− λ)Γ(1)
n,k

∣∣∣∣∣∣∣∣∣
1
= 1 (97)

for all λ ∈ (0, 1). By a similar argument, for Y with dim(Y) < nk, if∥∥∥λΓ(0)
n,k ⊗ 1L(Y) − (1− λ)Γ(1)

n,k ⊗ 1L(Y)

∥∥∥
1
= 1 (98)

for some λ ∈ (0, 1), then the above equation would also hold for λn, which
we have already shown is not the case. �

6. Weak entanglement measures and reversible quantum
channels

Theorem 7 provides an alternative characterization of the set of operators
X ∈ L(X ⊗ Y) whose trace norm equals 1 and whose negativity is max-
imized. In this section we prove a generalization of this result, albeit for
the restricted case in which X must be a density operator, in which the
negativity can be replaced by any member of a class of entanglement mea-
sures that we call weak entanglement measures. Many well-known measures
of entanglement fall into this class.
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Once the structure of density operators that maximize weak entangle-
ment measures is established, we will apply it to the question of when a
quantum channel is reversible, meaning that it has a left-inverse that is also
a channel. We prove that a channel is reversible if and only if it preserves
entanglement as measured by any weak entanglement measure, and equiv-
alently, if and only if its Choi matrix is maximally entangled as measured
by any weak entanglement measure.

6.1. Structure of states that maximize weak entanglement measures
We will begin by defining a class of entanglement measures that we call
weak entanglement measures.

Definition 12. A weak entanglement measure is a family of functions

{En,m : n, m ∈N, 1 ≤ n ≤ m}, (99)

each of which takes the form

En,m : D(Cn ⊗Cm)→ R, (100)

for which the following properties hold:

1. There exists a function g : N→ R for which

max
ρ∈D(Cn⊗Cm)

En,m(ρ) = g(n). (101)

That is, we assume that the maximum exists and that it is a function
only of the minimum of the two dimensions. We call g the maximum
function for the family {En,m}.

2. For any unit vector u ∈ S(Cn ⊗Cm), it holds that En,m(uu∗) = g(n) if
and only if u is maximally entangled (in the sense given in Equation
(7)).

3. The measure is monotonically decreasing under quantum channels
acting on the second subsystem. That is, for all density operators ρ ∈
D(Cn ⊗Cm) and channels Φ ∈ C(Cm, Ck) for k ≥ n, it holds that

En,k((1L(Cn) ⊗Φ)(ρ)) ≤ En,m(ρ). (102)

4. Each function En,m is pure state convex: for any set {u1, . . . , uN} ⊂
S(Cn ⊗Cm) and probability vector (p1, . . . , pN), it holds that

En,m

(
N

∑
i=1

piuiu∗i

)
≤

N

∑
i=1

pi En,m
(
uiu∗i

)
. (103)

A few comments on this definition are in order. First, pure state con-
vexity may seem an odd axiom (as opposed to general convexity), but there
may exist entanglement measures that are pure state convex and not gen-
erally convex. (For example, distillable entanglement is known to be pure-
state convex [10, Lemma 25], but may not be generally convex [11].) Second,
it is generally desired that entanglement measures satisfy stronger versions
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of the third condition (e.g., monotonicity with respect to any LOCC chan-
nel between both subsystems). Furthermore entanglement measures usu-
ally treat the two subsystems symmetrically, and Property 3 is asymmetric
in that it only applies to the second subsystem. In our proof the subsys-
tems are treated asymmetrically, and we only need monotonicity to hold
with respect to the second system (and hence this result can be applied to
functions like the coherent information).

The set of weak entanglement measures includes the negativity [4],
the coherent information [12] (where Property 3, called the data processing
inequality, is strong sub-additivity), the squashed entanglement [13, 14], en-
tanglement of formation, and distillable entanglement. See [15, Table 1] for
a list of commonly used entanglement measures and the properties that
they are known to satisfy.

In order to prove the theorem that follows we will make use of the
following simple lemma.

Lemma 13. Let X and Y be f.d. complex Hilbert spaces with dim(X ) ≤ dim(Y),
and let U, V ∈ U(X ,Y) be orthogonal isometries for which αU + βV is propor-
tional to an isometry for all choices of α, β ∈ C. It holds that U∗V = 0 (i.e., U and
V map X into orthogonal subspaces of Y).

Proof. It suffices to consider the pairs (α, β) = (1, 1) and (α, β) = (1, i). As
U + V and U + iV are proportional to isometries, the following operators
must be proportional to the identity operator:(

U + V
)∗(U + V

)
= 21+ (U∗V + V∗U), (104)(

U + iV
)∗(U + iV

)
= 21+ i(U∗V −V∗U). (105)

As U∗V and V∗U are traceless, we conclude that

U∗V + V∗U = 0 and U∗V −V∗U = 0, (106)

which implies U∗V = 0 as required. �

Theorem 14. Let X = Cn and Y = Cm for positive integers n and m satisfying
n ≤ m, and let ρ ∈ D(X ⊗Y). The following statements are equivalent:

1. For every weak entanglement measure {Es,t} with maximum function g it
holds that En,m(ρ) = g(n).

2. Statement 1 holds for any weak entanglement measure.
3. There exists a positive integer r ≤ m/n, a density operator σ ∈ D(Cr), and

an isometry U ∈ U(X ⊗Cr,Y) for which

ρ = (1X ⊗U)(τX ⊗ σ)(1X ⊗U∗). (107)

Proof. Statement 1 trivially implies statement 2 (as the set of weak entan-
glement measures is nonempty).

Now assume statement 2 holds: En,m(ρ) = g(n) for some weak en-
tanglement measure {Es,t} with maximum function g. By the pure-state
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convexity axiom (Property 4), for any pure-state decomposition

ρ =
N

∑
i=1

piviv∗i (108)

(for p1, . . . , pN positive) it holds that

g(n) = En,m(ρ) ≤
N

∑
i=1

pi En,m(viv∗i ) (109)

and En,m(viv∗i ) ≤ g(n), implying that En,m(viv∗i ) = g(n), for all i = 1, . . . , N.
Hence, by Property 2, every pure state decomposition of ρ necessarily con-
sists only of maximally entangled states. This is equivalent to the statement
that every unit vector v ∈ Im(ρ) contained in the image of ρ is maximally
entangled.

Now consider a spectral decomposition

ρ =
r

∑
i=1

piviv∗i (110)

of ρ, where r = rank(ρ) and we have restricted the sum to range only over
indices corresponding to positive eigenvalues of ρ. By the argument above,
one has that each vi is maximally entangled, so there exists an orthogonal
collection of isometries {V1, . . . , Vr} ⊂ U(X ,Y) for which

vi =
1√
n

vec(VT
i ) (111)

for each i ∈ {1, . . . , r}. For each pair i 6= j we find that

vec
(
αVT

i + βVT
j
)
∈ Im(ρ), (112)

and therefore αVi + βVj is proportional to an isometry for all α, β ∈ C. By
Lemma 13 it holds that V∗i Vj = 0, and hence rn ≤ m.

Along the same lines as in Theorem 7, define U ∈ U(X ⊗Cr,Y) and
σ ∈ D(Cr) as

U =
r

∑
i=1

Vi ⊗ e∗i and σ =
r

∑
i=1

piEii, (113)

where the fact that U is an isometry follows from V∗i Vj = 0 for i 6= j. It
follows by direct multiplication that

ρ = (1X ⊗U)(τX ⊗ σ)(1X ⊗U)∗, (114)

and therefore statement 2 implies statement 3.
Finally, assume that statement 3 holds, let {Es,t} be any weak entan-

glement measure with maximum function g, and define a channel Φ ∈
C(Y ,X ) as follows:

Φ(X) = TrCr (U∗YU) + 〈1Y −UU∗, Y〉η, (115)
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for all Y ∈ L(Y) and any fixed choice of a density operator η ∈ D(X ). It
holds that (1L(X ) ⊗Φ)(ρ) = τX , so by Property 3 one has

g(n) = En,n(τX ) = En,n((1L(X ) ⊗Φ)(ρ)) ≤ En,m(ρ) ≤ g(n). (116)

It follows that En,m(ρ) = g(n), and so statement 3 implies statement 1. �

Using the above characterization we can arrive at a density operator
version of Theorem 10 that holds for any weak entanglement measure.

Corollary 15. Let X1 = Cn1 , . . . ,Xk = Cnk and Y = Cm for positive integers
n1, . . . , nk and m satisfying n = ∏k

i=1 ni ≤ m, let ρ ∈ D(X1⊗· · ·⊗Xk⊗Y) be a
density operator, and let {Es,t} be any weak entanglement measure with maximum
function g. The following statements are equivalent:

1. It holds that
Eni ,m((Ri ⊗ 1L(Y))(ρ)) = g(ni) (117)

for all i = 1, . . . , k.
2. It holds that

En,m(ρ) = g(n). (118)

3. There exists a positive integer r ≤ n/m, a density operator σ ∈ D(Cr), and
an isometry

U ∈ U(X1 ⊗ · · · ⊗ Xk ⊗Cr,Y) (119)

for which

ρ = (1X1⊗···⊗Xk ⊗U)(τX1⊗···⊗Xk ⊗ σ)(1X1⊗···⊗Xk ⊗U∗). (120)

Proof. The equivalence of the above statements was shown for the nega-
tivity in Theorem 10, and Theorem 14 gives that statements 1 and 2 hold
for the negativity if and only if they hold for all weak entanglement mea-
sures. �

6.2. Reversible channels
A quantum channel Φ ∈ C(X ,Y) is called reversible if there exists a channel
Ψ ∈ C(Y ,X ) for which ΨΦ = 1L(X ) (i.e., Φ has a left inverse that is also a
channel). We apply Theorem 14 to show that a channel is reversible if and
only if it preserves entanglement as measured by any weak entanglement
measure. The structure given in Theorem 14 also allows us to re-derive a
result from [5], where it was shown that a channel is reversible if and only
if it has a certain form. We also add in a couple of other conditions.

Before stating the theorem, let us recall a couple of simple concepts
from the theory of quantum information. First, for positive semidefinite
operators P, Q ∈ Pos(X ), the fidelity is defined as

F(P, Q) =
∥∥∥√P

√
Q
∥∥∥

1
. (121)
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Second, for any pair of channels Φ ∈ C(X ,Y) and Ψ ∈ C(X ,Z), it is said
that Φ and Ψ are complementary if there exists an isometry A ∈ U(X ,Y ⊗Z)
such that

Φ(X) = TrZ (AXA∗) and Ψ(X) = TrY (AXA∗). (122)

We will also make use of a couple of simple facts, stated as lemmas as
follows. (See, for instance, Corollary 3.24 and Proposition 2.29 in [2].)

Lemma 16. For any u, v ∈ X ⊗ Y it holds that F(TrY (uu∗), TrY (vv∗)) =
‖TrX (uv∗)‖1.

Lemma 17. For u ∈ X ⊗Y and P ∈ Pos(X ⊗Z), if TrY (uu∗) = TrZ (P), then
there exists Ψ ∈ C(Y ,Z) for which (1L(X ) ⊗Ψ)(uu∗) = P.

Theorem 18. Let X = Cn and Y = Cm for positive integers n ≤ m, let Φ ∈
C(X ,Y) be a channel, and let {Es,t} be any weak entanglement measure with
maximum function g. The following statements are equivalent:

1. Φ is reversible.
2. Φ preserves entanglement with respect to {Es,t}, meaning that for all positive

integers k ≤ n and all density operators ρ ∈ D(Ck ⊗X ) it holds that

Ek,m
(
(1L(Ck) ⊗Φ)(ρ)

)
= Ek,n(ρ). (123)

3. It holds that
En,m

( 1
n J(Φ)

)
= g(n). (124)

4. There exists a positive integer r ≤ m/n, a density operator σ ∈ D(Cr), and
an isometry U ∈ U(X ⊗Cr,Y) for which

Φ(X) = U(X⊗ σ)U∗ (125)

for all X ∈ L(X ).
5. It holds that

‖Φ(X)‖1 = ‖X‖1 (126)
for all X ∈ L(X ).

6. It holds that
F(Φ(ρ), Φ(σ)) = F(ρ, σ) (127)

for all ρ, σ ∈ D(X ).
7. If Ψ ∈ C(X ,Z) is complementary to Φ, then there exists a density operator

σ ∈ D(Z) for which
Ψ(X) = Tr(X)σ (128)

for all X ∈ L(X ) (i.e., all channels which are complementary to Φ are con-
stant on D(X )).

Remark 19. We note that the equivalence of statements 1 and 4 is the con-
tent of [5, Theorem 2.1]. In the proof given therein, this equivalence follows
from an argument similar to a key step of the proof of Theorem 14 (as
well as Theorem 7). A similar argument has also been used to derive con-
ditions under which an error map is correctable [16]. The equivalence of
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statements 4 and 6 was proven in [17] for Y = X , but also for infinite di-
mensions. Lastly, for the case of the coherent information, the equivalence
of statements 1 and 3 is a special case of the result in [12, Section VI], in
which it was shown that a channel is reversible on half of a bipartite pure
state if and only if the data processing inequality is satisfied with equality.

Proof of Theorem 18. Assume that statement 1 holds, and let Ψ ∈ C(Y ,X )
be a left-inverse of Φ. By the monotonicity of weak entanglement measures
it holds that

Ek,n(ρ) = Ek,n
(
(1L(Ck) ⊗ΨΦ)(ρ)

)
≤ Ek,m

(
(1L(Ck) ⊗Φ)(ρ)

)
≤ Ek,n(ρ)

(129)

for all choices of k ≤ n and ρ ∈ D(Ck ⊗ X ). Hence, statement 1 implies
statement 2.

Statement 2 immediately implies statement 3, as statement 3 is equiv-
alent to the particular choice of k = n and ρ = τX in statement 2.

Next, under the assumption that statement 3 holds, one has that the
Choi operator of Φ is given by

J(Φ) = (1X ⊗U)(vec(1X )vec(1X )∗ ⊗ σ)(1X ⊗U∗), (130)

by Theorem 14. This is equivalent to

Φ(X) = U(X⊗ σ)U∗ (131)

for all X ∈ L(X ). It has therefore been proved that statement 3 implies
statement 4.

By well-known properties of the trace norm and the fidelity function,
one immediately finds that statement 4 implies both statements 5 and 6.

Now assume that statement 5 holds, and let Ψ ∈ C(X ,Z) be any com-
plementary channel to Φ. For any two unit vectors u, v ∈ S(X ), Lemma 16
implies that

F(Ψ(uu∗), Ψ(vv∗)) = ‖Φ(uv∗)‖1 = ‖uv∗‖1 = 1, (132)

and therefore Ψ(uu∗) = Ψ(vv∗). From this fact one concludes that Ψ is
constant on D(X ), i.e., there exists σ ∈ D(Z) for which Ψ(X) = Tr(X)σ for
all X ∈ L(X ). Statement 5 therefore implies statement 7.

Along somewhat similar lines, assume that statement 6 holds, and
again let Ψ ∈ C(X ,Z) be any complementary channel to Φ. For any choice
of orthogonal vectors u, v ∈ X it follows by Lemma 16 that

‖Ψ(uv∗)‖1 = F(Φ(uu∗), Φ(vv∗)) = F(uu∗, vv∗) = 0, (133)

and hence Ψ(uv∗) = 0. In particular, this implies that for Eij ∈ L(X ) with
i 6= j one has Ψ(Eij) = 0. Furthermore, because

Eii − Ejj =
1
2
[(ei + ej)(ei − ej)

∗ + (ei − ej)(ei + ej)
∗] (134)
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and (ei + ej) ⊥ (ei − ej), it follows that

Ψ(Eii)−Ψ(Ejj) =
1
2

Ψ((ei + ej)(ei − ej)
∗)− 1

2
Ψ((ei − ej)(ei + ej)

∗) = 0.
(135)

That is, there exists σ ∈ D(Z) for which Ψ(Eii) = σ for all 1 ≤ i ≤ n.
Hence, we have

J(Ψ) =
n

∑
i,j=1

Eij ⊗Ψ(Eij) = 1X ⊗ σ, (136)

which is equivalent to Ψ(X) = Tr(X)σ for all X ∈ L(X ). Statement 6 there-
fore implies statement 7.

Finally, assume that statement 7 holds. Let Ψ ∈ C(X ,Z) be the com-
plementary channel associated with any fixed Stinespring representation
Φ(X) = TrZ (AXA∗) for A ∈ U(X ,Y ⊗ Z). Assuming that σ ∈ D(Z) sat-
isfies Ψ(X) = Tr(X)σ for all X ∈ L(X ), it holds that J(Ψ) = 1X ⊗ σ, and
hence

TrY (vec(AT)vec(AT)∗) = 1X ⊗ σ = TrX (vec(1X )vec(1X )∗ ⊗ σ). (137)

By Lemma 17 there exists a channel Ξ ∈ C(Y ,X ) for which

(1L(X ) ⊗ Ξ⊗ 1L(Z))(vec(AT)vec(AT)∗) = vec(1X )vec(1X )∗ ⊗ σ. (138)

By tracing out Z we get

J(ΞΦ) = (1L(X ) ⊗ Ξ)(J(Φ)) = vec(1X )vec(1X )∗ = J(1L(X )), (139)

giving ΞΦ = 1L(X ). Statement 7 therefore implies statement 1, which com-
pletes the proof. �

7. Discussion
We have shown that there exists a family of channel discrimination prob-
lems for which a perfect discrimination requires ancilla system with dimen-
sion equal to that of the input, even when the output dimension is much
smaller. Beyond this it would be nice to have a formula for, or even non-
trivial bounds on,

∥∥Ψn,k ⊗ 1L(Cm)

∥∥
1 when m < nk. To serve as a launching

ground for future investigations, in Appendix B we have included numer-
ically computed lower bounds for

∥∥Ψn,2 ⊗ 1L(Cm)

∥∥
1 for 2 ≤ n ≤ 6 and

n ≤ m ≤ n2, computed in MATLAB using QETLAB [18]. More generally,
one could try to find non-trivial bounds on∥∥(λΦ0 − (1− λ)Φ1)⊗ 1L(Ck)

∥∥
1 (140)

for all Φ0, Φ1 ∈ C(Cn, Cm) in terms of n, m, k, and |||λΦ0 − (1− λ)Φ1|||1,
though this is likely a much more difficult task.

Theorem 10 shows that for m ≥ nk the optimal operators have a spe-
cial form where the ancilla system factorizes into k copies of Cn. This seems
intuitively natural, as in the channel discrimination setting, discriminating
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these channels is like playing k separate Werner-Holevo channel discrimi-
nation games using a single resource system, where the referee randomly
selects which game will be played and throws away the rest of the input
systems. In this setting, Theorem 10 says that all optimal strategies are in-
dependent, in the sense that the only way of creating an optimal strategy
is to stick together k-instances of optimal strategies for discriminating the
Werner-Holevo channels. It is thus natural to conjecture that this would be
true for m < nk, however this is not the case. For the k = 2 case, we show
in Proposition 20 in Appendix A that such independent strategies have the
optimal value n + bm/nc when n ≤ m < n2, however, lower bounds on the
optimal value computed in Appendix B are well above this.

Another question is whether or not the optimum in the induced 1-
norm of Ψn,k ⊗ 1L(Cm) is achieved by some Hermitian operator when m <

nk. Even for Hermiticity preserving maps it is known that this does not hold
generally [19]. Proposition 5 shows that this holds for the partial transpose
map (i.e. the case when k = 1), and numerical evidence in Appendix B
suggests that this holds when k = 2. We conjecture that it holds for all
n ≥ 2 and k ≥ 1.
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Appendix A. Optimal value for independent strategies in
the k = 2 case

To be precise, what we mean by an independent strategy for optimizing∥∥(Ψn,2 ⊗ 1L(Y)
)
(X)

∥∥
1

=
∥∥(T ⊗ 1L(Y)

)(
TrX2(X)

)∥∥
1 +

∥∥(T ⊗ 1L(Y)
)(

TrX1(X)
)∥∥

1

(141)

for X ∈ L(X1 ⊗X2 ⊗ Y), is an attempt at optimizing the above expression
with an operator of the following form. For a, b ∈ {1, . . . , dim(Y)} with
ab ≤ dim(Y) and some U ∈ U(Ca ⊗Cb,Y), X takes the form

X = (1X1⊗X2 ⊗U) (Y1 ⊗Y2)︸ ︷︷ ︸
∈L(X1⊗X2⊗Ca⊗Cb)

(1X1⊗X2 ⊗U∗) (142)

for some Y1 ∈ L(X1 ⊗ Ca) and Y2 ∈ L(X2 ⊗ Cb) with ‖Y1‖1 = ‖Y2‖1 = 1,
and we are again using the implicit permutation notation introduced in
Section 5. For an operator of this form we have∥∥(Ψn,2 ⊗ 1L(Y)

)
(X)

∥∥
1 =

∥∥(T ⊗ 1L(Ca)

)
(Y1)

∥∥
1

∥∥TrX2(Y2)
∥∥

1+∥∥(T ⊗ 1L(Cb)

)
(Y2)

∥∥
1

∥∥TrX1(Y1)
∥∥

1.
(143)
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Corollary 11 says that when dim(Y) ≥ n2, optimal operators are necessarily
of this form. We now give the optimal value for these operators when n ≤
dim(Y) < n2.

Proposition 20. Let X1 and X2 denote copies of Cn and let Y = Cm with n ≤
m < n2. If X ∈ L(X1 ⊗X2 ⊗Y) is of the form given in Equation (142), then∥∥(Ψn,2 ⊗ 1L(Y)

)
(X)

∥∥
1 ≤ n + bm/nc, (144)

and furthermore equality is achieved for some operator of this form.

Proof. First, for such an X the value achieved in Equation (143) can be upper
bounded by∥∥(T ⊗ 1L(Ca)

)
(Y1)

∥∥
1

∥∥TrX2(Y2)
∥∥

1 +
∥∥(T ⊗ 1L(Cb)

)
(Y2)

∥∥
1

∥∥TrX1(Y1)
∥∥

1

≤
∥∥(T ⊗ 1L(Ca)

)
(Y1)

∥∥
1 +

∥∥(T ⊗ 1L(Cb)

)
(Y2)

∥∥
1

≤ min(n, a) + min(n, b),

(145)

where the first inequality is monotonicity of the 1-norm under partial trace,
and the second is two applications of Proposition 5. Next, observe that for
fixed a and b, this value is attained by some choice of Y1 and Y2 (again, by
Proposition 5), and finally, observe that by virtue of the min functions, there
is no reason to consider either a > n or b > n. In summary, the optimal
value for operators of this form is the same as the optimal value of the
following simpler optimization problem

max{a + b : a, b ∈ {1, . . . , n}, ab ≤ m} = α. (146)

Note that a = n and b = bm/nc satisfy the constraints, so α ≥ n + bm/nc.
To see that α ≤ n+ bm/nc, consider the relaxed optimization problem

max{a + b : a, b ∈ [1, n], ab ≤ m} = β ≥ α. (147)

For a given a the optimal value of b is min(n, m/a), so

β = max{a + min(n, m/a) : a ∈ [1, n]}. (148)

The function f (a) = a + min(n, m/a) is strictly increasing over the interval
[1, m/n], so the optimum is achieved at some point in the interval [m/n, n],
on which f (a) = a+m/a. f is convex on [m/n, n] as f ′′(a) = 2m/a3 > 0, so
the optimum is achieved at an endpoint, and in this case f (m/n) = f (n) =
n + m/n. Hence

α ≤ β = n + m/n, (149)

and since α is a natural number this implies α ≤ n + bm/nc. �



28 Daniel Puzzuoli and John Watrous

Appendix B. Numerical tests
For Φ ∈ T(X ,Y), computing ‖Φ‖1 is hard in general. However, as detailed
in [20], there are nice algorithms for computing lower bounds to ‖Φ‖1. For
2 ≤ n ≤ 6 and n ≤ m ≤ n2, Table 1 contains computed lower bounds for
‖Ψn,2 ⊗ 1L(Cm)‖1, as well as computed lower bounds for ‖Ψn,2 ⊗ 1L(Cm)‖H

1 ,
where

‖Φ‖H
1 = max{‖Φ(H)‖1 : H ∈ Herm(X ), ‖H‖1 = 1}. (150)

The computations were done in MATLAB using modified versions of the
function InducedSchattenNorm in the QETLAB [18] package (which uses
the algorithm in [20]). For n = 5 and n = 6, plots ranging over n ≤ m ≤ n2

are given in Figure 2. The code and data used in this appendix can be found
in the GitHub repository at [21].

One feature of the data is that the lower bounds for ‖Ψn,2 ⊗ 1L(Cm)‖1

and ‖Ψn,2 ⊗ 1L(Cm)‖H
1 almost always agree (up to stopping precision), and

in cases of disagreement the value computed for Hermitian inputs is always
the larger of the two. This lends evidence to the conjecture that∥∥Ψn,2 ⊗ 1L(Cm)

∥∥
1 =

∥∥Ψn,2 ⊗ 1L(Cm)

∥∥H
1 , (151)

and the stronger conjecture that∥∥Ψn,k ⊗ 1L(Cm)

∥∥
1 =

∥∥Ψn,k ⊗ 1L(Cm)

∥∥H
1 (152)

for all k.
Another curious feature, displayed in Figure 2, is that while seeming

to increase roughly linearly in m, there is a bump when m is a multiple of
n, with dips between these points. It is unclear whether this is an actual
feature of

∥∥Ψn,2 ⊗ 1L(Cm)

∥∥
1 or is a peculiarity of the lower bounds found

by the algorithm.
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Figure 2. Plots for the data in Table 1 for n = 5 and n = 6.

(a) n = 5, 5 ≤ m ≤ 25.
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Table 1. Lower bounds for
∥∥Ψn,2 ⊗ 1L(Cm)

∥∥
1 and

∥∥Ψn,2 ⊗
1L(Cm)

∥∥H
1 (the columns with ‘-H’) for 2 ≤ n ≤ 6 (columns)

and n ≤ m ≤ n2 (rows), computed using 1000 initial
guesses and a stopping tolerance of 10−5.

m\n 2 2-H 3 3-H 4 4-H 5 5-H 6 6-H
2 3.0448 3.0448
3 3.4142 3.4142 4.0656 4.0656
4 4.0000 4.0000 4.3307 4.3307 5.0777 5.0777
5 4.6386 4.6386 5.2830 5.2830 6.0857 6.0857
6 5.0551 5.0551 5.4711 5.4711 6.2527 6.2527 7.0914 7.0914
7 5.2361 5.2361 5.6949 5.6949 6.4100 6.4100 7.2319 7.2319
8 5.5615 5.5616 6.0896 6.0896 6.5593 6.5593 7.3666 7.3666
9 6.0000 6.0000 6.2240 6.2241 6.7331 6.7331 7.4961 7.4961
10 6.4873 6.4873 7.1136 7.1136 7.6209 7.6209
11 6.7635 6.7635 7.2207 7.2209 7.7611 7.7611
12 7.0596 7.0596 7.4396 7.4396 8.1312 8.1312
13 7.1622 7.1623 7.6222 7.6222 8.2202 8.2206
14 7.3722 7.3723 7.8151 7.8152 8.4068 8.4068
15 7.6457 7.6457 8.1023 8.1023 8.5342 8.5342
16 8.0000 8.0000 8.1873 8.1874 8.6700 8.6701
17 8.3605 8.3605 8.8563 8.8564
18 8.5850 8.5850 9.1344 9.1344
19 8.8297 8.8297 9.2058 9.2061
20 9.0623 9.0623 9.3479 9.3480
21 9.1295 9.1296 9.5437 9.5437
22 9.2749 9.2749 9.7192 9.7192
23 9.4641 9.4641 9.8829 9.8830
24 9.7016 9.7016 10.1101 10.1101
25 10.0000 10.0000 10.1708 10.1711
26 10.2970 10.2971
27 10.4621 10.4621
28 10.6717 10.6717
29 10.8717 10.8717
30 11.0639 11.0639
31 11.1145 11.1146
32 11.2170 11.2170
33 11.3589 11.3589
34 11.5311 11.5311
35 11.7416 11.7416
36 12.0000 12.0000
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